DOI QR코드

DOI QR Code

A study of the antifungal properties and flexural strength of 3D printed denture base resin containing titanium dioxide nanoparticles

이산화티타늄 나노입자를 함유한 3D 프린팅 의치상 레진의 항진균성 및 굽힘 강도에 대한 연구

  • Seok-Won Yoon (Department of Prosthodontics, School of Dentistry, Dankook University) ;
  • Young-Eun Cho (Department of Prosthodontics, School of Dentistry, Dankook University)
  • 윤석원 (단국대학교 치과대학 치과보철학교실) ;
  • 조영은 (단국대학교 치과대학 치과보철학교실)
  • Received : 2023.12.28
  • Accepted : 2024.02.14
  • Published : 2024.04.30

Abstract

Purpose. With the advancement of digital technology, 3D printing is being utilized in the fabrication of denture base. Nevertheless, increasing microbial adhesion to the surface of denture base has been reported as the disadvantage of 3D-printed denture base. The purpose of this study is to investigate the antifungal properties and flexural strength of 3D-printed denture base resin according to the different contents of titanium dioxide nanoparticles. Materials and methods. Titanium dioxide nanoparticles were mixed with the 3D printing resin at the ratios of 0.5, 1, 1.5, and 2 wt%. Twenty specimens per each group were printed in the form of cylindrical shape (diameter: 20 mm, height: 3 mm) to evaluate antifungal properties. Ten specimens from each group underwent polishing using autogrinder, while the remaining ten specimens did not. Candida albicans in hyphae form was inoculated onto each specimen, optical density and colony-forming unit were analyzed. The surface of the specimen was observed using scanning electron microscopy. To evaluate the flexural strength, twenty specimens per each group were 3D printed in the form of rectangular prism shape (length: 64 mm, height: 10 mm, width: 3 mm) and three-point bending tests were conducted using universal testing machine according to ISO 20795-1. Results. Colony-forming unit of C.albicans and optical density of culture medium showed no difference between non-polished groups, but decreased in the polished groups at concentration of 1, 1.5, 2 wt% titanium dioxide nanoparticles. Flexural strength increased with titanium dioxide nanoparticle at concentration of 0.5, 1, 1.5 wt%, but decreased at 2 wt% compared to 1.5 wt%. Conclusion. When 1.5 wt% of titanium dioxide nanoparticles were added to the 3D-printed denture base resin with polishing, antifungal properties were increased.

목적: 디지털 기술이 발전함에 따라 3D 프린팅 기술이 의치상 제작에 활용되고 있으나 적층 제조의 특성상 의치상 표면에 미생물 부착이 증가한다는 단점이 있다. 본 연구는 3D 프린팅 의치상 레진의 항진균성을 개선하기 위하여, 이산화티타늄 나노입자를 각기 다른 중량비로 첨가하였을 때 균사 형태의 Candida albicans에 대한 의치상 레진의 항진균성과 그에 따른 굽힘 강도의 변화에 대해 알아보고자 하였다. 재료 및 방법: 항진균성을 평가하기 위해 3D 프린팅 레진에 이산화티타늄 나노입자를 0.5, 1, 1.5, 2 wt%의 중량비로 혼합하고, 이산화티타늄 나노입자를 포함하지 않은 대조군을 포함해 5개 군을 직경 20 mm 높이 3 mm의 원기둥 형태의 형태로 각각 20개씩 출력하였다. Autogrinder를 이용하여 10개는 연마를 시행하였고, 나머지 10개는 연마를 시행하지 않았다. 각 시편에 균사 형태의 C.albicans를 접종하고, 흡광도와 집락수를 분석하였고, 시편의 표면을 주사전자현미경으로 관찰하였다. 또한, 굽힘 강도 비교를 위해 의치상 레진에 이산화티타늄 나노입자를 0.5, 1, 1.5, 2 wt%의 중량비로 혼합하고, 길이 64 mm, 높이 10 mm, 폭 3 mm 형태(ISO 20795-1)의 시편을 각 군당 20개씩 출력하였고, 만능시험기로 3점 굽힘 강도 시험을 시행하였다. 결과: C.albicans의 집락수와 배양액의 흡광도는 연마를 시행하지 않은 군에서 차이가 없었으나, 연마를 시행한 군에서는 대조군에 비해 감소하였다. 굽힘 강도는 이산화티타늄 나노입자 농도 0, 1, 1.5 wt%에서 증가하였으나 2 wt%에서 1.5 wt%에 비해 감소하였다. 결론: 3D 프린팅 의치상 레진에 이산화티타늄 나노입자를 1.5 wt% 첨가하였을 때, 의치상 레진의 항진균성과 굽힘 강도가 증가하였다.

Keywords

References

  1. Lima JM, Anami LC, Araujo RM, Pavanelli CA. Removable partial dentures: use of rapid prototyping. J Prosthodont 2014;23:588-91.
  2. Li P, Fernandez PK, Spintzyk S, Schmidt F, Beuer F, Unkovskiy A. Effect of additive manufacturing method and build angle on surface characteristics and Candida albicans adhesion to 3D printed denture base polymers. J Dent 2022;116:103889.
  3. Meirowitz A, Rahmanov A, Shlomo E, Zelikman H, Dolev E, Sterer N. Effect of denture base fabrication technique on candida albicans adhesion in vitro. Materials 2021;14:221.
  4. Chan AKY, Tamrakar M, Jiang CM, Lo ECM, Leung KCM, Chu CH. Common medical and dental problems of older adults: A narrative review. Geriatrics 2021;6:76.
  5. Jose A, Coco BJ, Milligan S, Young B, Lappin DF, Bagg J, Murray C, Ramage G. Reducing the incidence of denture stomatitis: are denture cleansers sufficient? J Prosthodont 2010;19:252-7.
  6. Teughels W, Van Assche N, Sliepen I, Quirynen M. Effect of material characteristics and/or surface topography on biofilm development. Clin Oral Implants Res 2006;17:68-81.
  7. Ayaal F, Chehri K. Antifungal activity of Au, Ag, TiO2, Ch, Pd, Se, and ZnO nanoparticles against Candida albicans: a review. Plant Archives 2019;19:33-44.
  8. Kamonkhantikul K, Arksornnukit M, Takahashi H. Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles. Int J Nanomedicine 2017;12:2353-60.
  9. Gad MM, Abualsaud R. Behavior of PMMA denture base materials containing titanium dioxide nanoparticles: a literature review. Int J Biomater 2019;2019:6190610.
  10. Totu EE, Nechifor AC, Nechifor G, Aboul-Enein HY, Cristache CM. Poly(methyl methacrylate) with TiO2 nanoparticles inclusion for stereolitographic complete denture manufacturing - the fututre in dental care for elderly edentulous patients? J Dent 2017;59:68-77.
  11. Liu Y, Chen J, Ning L, Sun J, Liu L, Zhao K. Preparation and properties of nano-TiO2-modified photosensitive materials for 3D printing. e-Polymers 2022;22:686-95.
  12. ISO 20795. Dentistry - Base polymers. International Organization for Standardization, Geneva, Switzerland; 2013.
  13. Karci M, Demir N, Yazman S. Evaluation of Flexural Strength of Different Denture Base Materials Reinforced with Different Nanoparticles. J Prosthodont 2019;28:572-9.
  14. Korkmaz T, Dogan A, Usanmaz A. Dynamic mechanical analysis of provisional resin materials reinforced by metal oxides. Biomed Mater Eng 2005;15:179-88.
  15. Gad MM, Fouda SM, Abualsaud R, Alshahrani FA, Al-Thobity AM, Khan SQ, Akhtar S, Ateeq IS, Helal MA, Al-Harbi FA. Strength and surface properties of a 3D-printed denture base polymer. J Prosthodont 2022;31:412-8.
  16. Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater 2020;5:110-5.
  17. Hamama HH. Recent advances in posterior resin composite restorations. Appl Nanocompos Mater Dent 2019:319-36.
  18. Meshref AA, Mazen AA, El-Giushi MA, Ali WY. Wear behavior of hybrid composite reinforced with titanium dioxide nanoparticles. J Adv Engineer Trends 2020;39:89-101.
  19. Xia Y, Zhang F, Xie H, Gu N. Nanoparticle-reinforced resin-based dental composites. J Dent 2008;36:450-5.
  20. Zhang Z, Breidt C, Chang L, Haupert F, Friedrich K. Enhancement of the wear resistance of epoxy: short carbon fibre, graphite, PTFE and nano-TiO2. Compos Part A: Appl Sci Manuf 2004;35:1385-92.
  21. Atay A, Piskin B, Akin H, Sipahi C, Karakas A, Saracli MA. Evaluation of Candida albicans adherence on the surface of various maxillofacial silicone materials. J Mycol Med 2013;23:27-32.
  22. Calderone RA. Recognition between Candida albicans and host cells. Trends in microbiol 1993;1:55-8.
  23. Reijnders L. The release of TiO2 and SiO2 nanoparticles from nanocomposites. Polymer Degrad Stab 2009;94:873-6.