DOI QR코드

DOI QR Code

Performance-based seismic design of a spring-friction damper retrofit system installed in a steel frame

  • Masoum M. Gharagoz (Department of Civil Engineering, School of Engineering, Aalto University) ;
  • Seungho Chun (Department of Global Smart City, Sungkyunkwan University) ;
  • Mohamed Noureldin (Department of Civil Engineering, School of Engineering, Aalto University) ;
  • Jinkoo Kim (Department of Global Smart City, Sungkyunkwan University)
  • Received : 2023.04.05
  • Accepted : 2023.09.13
  • Published : 2024.04.25

Abstract

This study investigates a new seismic retrofit system that utilizes rotational friction dampers and axial springs. The retrofit system involves a steel frame with rotational friction dampers (RFD) at beam-column joints and linear springs at the corners, providing energy dissipation and self-centering capabilities to existing structures. The axial spring acts as a self-centering mechanism that eliminates residual deformations, while the friction damper mitigates seismic damage. To evaluate the seismic performance of the proposed retrofit system, a series of cyclic loading tests were carried out on a steel beam-column subassembly equipped with the proposed devices. An analytical model was then developed to validate the experimental results. A performance point ratio (PPR) was presented to optimize the design parameters of the retrofit system, and a performance-based seismic design strategy was developed based on the PPR. The retrofit system's effectiveness and the presented performance-based design approach were evaluated through case study models, and the analysis results demonstrated that the developed retrofit system and the performance-based design procedure were effective in retrofitting structures for multi-level design objectives.

Keywords

Acknowledgement

This research was supported by a grant(2021-MOIS35-003) of 'Policy-linked Technology Development Program on Natural Disaster Prevention and Mitigation' funded by Ministry of Interior and Safety (MOIS, Korea).

References

  1. Abd-alla, M.N. (2007), "Application of recent techniques of pushover for evaluating seismic performance of multistory building", Faculty of Engineering, Cairo University.
  2. Ali, T., Eldin, M.N. and Haider, W. (2023), "The effect of soil-structure interaction on the seismic response of structures using machine learning, finite element modeling and ASCE 7-16 methods", Sensors, 23(4), 2047.
  3. ASCE/SEI 41-17 (2017), Seismic Evaluation and Retrofit of Existing Buildings, USA.
  4. Azandariani, M.G., Gholhaki, M., Kafi, M.A., Zirakian, T., Khan, A., Abdolmaleki, H. and Shojaeifar, H. (2021), "Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)", Steel Compos. Struct., 39(1), 109-123. https://doi.org/10.12989/scs.2021.39.1.109.
  5. Cao, X.Y., Feng, D.C. and Wu, G. (2021), "Pushover-based probabilistic seismic capacity assessment of RCFs retrofitted with PBSPC BRBF sub-structures", Eng. Struct., 234, 111919. https://doi.org/10.1016/j.engstruct.2021.111919.
  6. Colajanni, P. and Pagnotta, S. (2022), "Friction-based beam-to-column connection for low-damage RC frames with hybrid trussed beams", Steel Compos. Struct., 45(2), 231-248. https://doi.org/10.12989/scs.2022.45.2.231.
  7. CSI (2014), SAP2000 Integrated Software for Structural Analysis and Design, Computers and Structures Inc., Berkeley, California, USA.
  8. Dereje, J.A., Eldin, M.N. and Kim, J. (2021), "Seismic retrofit of a soft first story structure using an optimally designed post-tensioned PC frame", Earthq. Struct., 20(6), 627-637.
  9. Fajfar, P., Dolsek, M., Marusic, D. and Stratan, A. (2006), "Pre-and post-test mathematical modelling of a plan-asymmetric reinforced concrete frame building", Earthq. Eng. Struct. Dyn., 35(11), 1359-1379. https://doi.org/10.1002/eqe.583.
  10. Gharagoz, M.M., Noureldin, M. and Kim, J. (2023), "Machine learning-based design of a seismic retrofit frame with spring-rotational friction dampers", Eng. Struct., 292, 116053. https://doi.org/10.1016/j.engstruct.2023.116053.
  11. Gkournelos, P.D., Triantafillou, T.C. and Bournas, D.A. (2021), "Seismic upgrading of existing reinforced concrete buildings: A state-of-the-art review", Eng. Struct., 240, 112273. https://doi.org/10.1016/j.engstruct.2021.112273.
  12. Japan Association for Earthquake Engineering (JEES) (2000), Seismic Isolation Design. Maruzen Co., Ltd, Japan.
  13. Javidan, M.M. and Kim, J. (2020), "Steel hysteretic column dampers for seismic retrofit of soft-first-story structures", Steel Compos. Struct., 37(3), 259-272. https://doi.org/10.12989/SCS.2020.37.3.259.
  14. Javidan, M.M. and Kim, J. (2021), "A rotational friction damper-brace for seismic design of resilient framed structures", Build. Eng., 51, 104248. https://doi.org/10.1016/j.jobe.2022.104248.
  15. Latour, M., Piluso, V. and Rizzano, G. (2014), "Experimental analysis on friction materials for supplemental damping devices", Const. Build. Mater., 65, 159-176. https://doi.org/10.1016/j.conbuildmat.2014.04.092.
  16. Masoomzadeh, M., Basim, M.C., Chenaghlou, M.R. and Khajehsaeid, H. (2023), "Probabilistic performance assessment of eccentric braced frames using artificial neural networks combined with correlation latin hypercube sampling", Structures, 48, 226-240. https://doi.org/10.1016/j.istruc.2022.11.132.
  17. Mirzai, M.M. and Hu, J.W. (2019), "Pilot study for investigating the inelastic response of a new axial smart damper combined with friction devices", Steel Compos. Struct., 32(3), 373-388. https://doi.org/10.12989/scs.2019.32.3.373.
  18. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2020), "Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36(2) 163-177. https://doi.org/10.12989/SCS.2020.36.2.163.
  19. Naeem, A. and Kim, J. (2018), "Seismic retrofit of a framed structure using damped cable systems", Steel Compos. Struct., 29(3), 287-299. https://doi.org/10.12989/scs.2018.29.3.287.
  20. Noureldin, M., Adane, M. and Kim, J. (2021a), "Seismic fragility of structures with energy dissipation devices for mainshock-aftershock events", Earthq. Struct., 21(3), 219-230.
  21. Noureldin, M., Ahmed, S. and Kim, J. (2021-b), "Self-centering steel slotted friction device for seismic retrofit of beam-column joints", Steel Compos. Struct., 41(1), 13-30. https://doi.org/10.12989/scs.2021.41.1.013.
  22. Noureldin, M., Ali, A., Sim, S. and Kim, J. (2022a), "A machine learning procedure for seismic qualitative assessment and design of structures considering safety and serviceability", J. Build. Eng., 50, 104190.
  23. Noureldin, M., Ali, A., Memon, S. and Kim, J. (2022b), "Fragility-based framework for optimal damper placement in low-rise moment-frame buildings using machine learning and genetic algorithm", J. Build. Eng., 54, 104641.
  24. Noureldin, M., Ali, T. and Kim, J. (2023-a), "Machine learning-based seismic assessment of framed structures with soilstructure interaction", Front. Struct. Civil Eng., 17(2), 205-223. https://doi.org/10.1007/s11709-022-0909-y
  25. Noureldin, M., Gharagoz, M.M. and Kim, J. (2023-b), "Seismic retrofit of steel structures with re-centering friction devices using genetic algorithm and artificial neural network", Steel Compos. Struct., 47(2), 167-184. https://doi.org/10.12989/scs.2023.47.2.167.
  26. Noureldin, M., Kim, J. and Kim, J. (2018), "Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos. Struct., 27(5), 633-646. https://doi.org/10.12989/scs.2018.27.5.633.
  27. Noureldin, M., Memon, S.A., Gharagoz, M.M. and Kim, J. (2021c), "Performance-based seismic retrofit of RC structures using concentric braced frames equipped with friction dampers and disc springs", Eng. Str., 243, 112555. https://doi.org/10.1016/j.engstruct.2021.112555.
  28. Oberg, E., Jones, F.D., Horton, H.L., Ryffel, H.H. and Heal, R.M. (2000), Machinery's Handbook 26: A Reference Book for the Mechanical Engineer, Designer, Manufacturing Engineer, Draftsman, Toolmaker, and Machinist, Industrial Press Inc., ISBN 0-8311-2635-3.
  29. PEER (2021), Pacific Earthquake Engineering Research (PEER) Center: NGA Database. Retrieved April 8, 2021, www.peer.berkeley.edu
  30. Tabrizikahou, A., Kuczma, M., Nowotarski, P., Kwiatek, M. and Javanmardi, A. (2021), "Sustainability of civil structures through the application of smart materials: a review", Materials, 14(17). 4824. https://doi.org/10.3390/ma14174824.
  31. Vamvatsikos, D. (2014), "Seismic performance uncertainty estimation via IDA with progressive accelerogram-wise latin hypercube sampling", Struct. Eng., 140(8), A4014015. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001030.
  32. Xu, L., Fan, X. and Li, Zh. (2020), "Seismic assessment of buildings with prepressed spring self-centering energy dissipation braces", Struct. Eng., 146(2) 04019190. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002493.
  33. Yousef-beik, S.M.M., Veismoradi, S., Zarnani, P. and Quenneville, P. (2020), "A new self-centering brace with zero secondary stiffness using elastic buckling", Constr. Steel Res., 169, 106035. https://doi.org/10.1016/j.jcsr.2020.106035.
  34. Zahrai, S.M., Moradi, A. and Moradi, M. (2015), "Using friction dampers in retrofitting a steel structure with masonry infill panels", Steel Compos. Struct., 19(2), 309-325. https://doi.org/10.12989/scs.2015.19.2.309.