DOI QR코드

DOI QR Code

An advanced software interface to make OpenSees for thermal analysis of structures more user-friendly

  • Seong-Hoon Jeong (Department of Architectural Engineering, Inha University) ;
  • Ehsan Mansouri (Institute of Research and Development, Duy Tan University) ;
  • Nadia Ralston (Department of Civil and Environmental Engineering, Princeton University) ;
  • Jong-Wan Hu (Department of Civil and Environmental Engineering, Incheon National University)
  • 투고 : 2022.11.07
  • 심사 : 2024.04.04
  • 발행 : 2024.04.25

초록

In this paper, structural behavior under fire conditions is comprehensively examined, and a novel software interface for testing interfaces efficiently is developed and validated. In order to accurately assess the response of structures to fire scenarios, advanced simulation techniques and modeling approaches are incorporated into the study. This interface enables accurate heat transfer analysis and thermo-mechanical simulations by integrating software tools such as CSI ETABS, CSI SAP2000, and OpenSees. Heat transfer models can be automatically generated, simulation outputs processed, and structural responses interpreted under a variety of fire scenarios using the proposed technique. As a result of rigorous testing and validation against established methods, including Cardington tests on scales and hybrid simulation approaches, the software interface has been proven to be effective and accurate. The analysis process is streamlined by this interface, providing engineers and researchers with a robust tool for assessing structural performance under fire conditions.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF- 2021R1A2B5B02002599) and Inha University Research Grant.

참고문헌

  1. AISC (2010), "Specification for Structural Steel Buildings, ANSI / AISC 360-16", American Institute of Steel Construction.
  2. Aseem, A., Latif Baloch, W., Khushnood, R.A. and Mushtaq, A. (2019), "Structural health assessment of fire damaged building using non-destructive testing and micro-graphical forensic analysis: A case study", Case Stud. Constr. Mater., 11. https://doi.org/10.1016/j.cscm.2019.e00258.
  3. Asteris, P.G., Maraveas, C., Chountalas, A.T., Sophianopoulos, D.S. and Alam, N. (2022), "Fire resistance prediction of slim-floor asymmetric steel beams using single hidden layer ANN models that employ multiple activation functions", Steel Compos. Struct., 44(6), 769-788. https://doi.org/10.12989/scs.2022.44.6.769.
  4. Bailey, C. (1998), "Computer modelling of the corner compartment fire test on the large-scale Cardington test frame", J. Constr. Steel Res., 48(1), 27-45. https://doi.org/10.1016/S0143-974X(97)00078-3.
  5. CEN (2005), "Eurocode 3: Design of steel structures - Part 1-2: General rules - Structural fire design", J. Constr. Steel Res., 54(2).
  6. Choi, I.R. (2020), "High-temperature thermal properties of sprayed and infill-type fire-resistant materials used in steel-tube columns", Int. J. Steel Struct, 20(3). https://doi.org/10.1007/s13296-020-00322-8.
  7. Elghazouli, A.Y. and Izzuddin, B.A. (2004), "Realistic modeling of composite and reinforced concrete floor slabs under extreme loading. II: verification and application", J. Struct. Eng., 130(12), 1985-1996. American Society of Civil Engineers. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:12(1985).
  8. European Standard (2002), Eurocode 1: Actions on Structures - Part 1-2: General Actions - Actions on Structures Exposed to Fire. Eurocode 1: Actions on Structures.
  9. Franssen, J.M. (2005), "SAFIR: A thermal/structural program for modeling structures under fire", Eng. J.
  10. Gao, W.Y., Dai, J.G., Teng, J.G. and Chen, G.M. (2013), "Finite element modeling of reinforced concrete beams exposed to fire", Eng. Struct., 52. https://doi.org/10.1016/j.engstruct.2013.03.017.
  11. Hajiloo, H., Adelzadeh, M. and Green, M. (2017), Collapse of the Plasco Tower in Fire.
  12. Huang, Z., Burgess, I.W. and Plank, R.J. (2000), "Three-dimensional analysis of composite steel-framed buildings in fire", J. Struct. Eng., 126(3), 389-397. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(389).
  13. Jiang, L. and Usmani, A. (2018), "Computational performance of beam-column elements in modelling structural members subjected to localised fire", Eng. Struct., 156, 490-502. https://doi.org/10.1016/J.ENGSTRUCT.2017.11.008.
  14. Khan, A.A., Domada, R.V.V., Huang, X., Khan, M.A. and Usmani, A. (2022a), "Modeling the collapse of the Plasco Building. Part I: Reconstruction of fire", Build. Simul., 15(4). https://doi.org/10.1007/s12273-021-0825-4.
  15. Khan, A.A., Khan, M.A., Zhang, C., Jiang, L. and Usmani, A. (2022b), "OpenFIRE: An open computational framework for structural response to real fires", Fire Technol., 58(2). https://doi.org/10.1007/s10694-021-01184-0.
  16. Khan, M.A., Khan, A.A., Usmani, A.S. and Huang, X. (2022c), "Can fire cause the collapse of Plasco Building: A numerical investigation", Fire Mater., 46(3). https://doi.org/10.1002/fam.3003.
  17. Lennon, T. and Moore, D. (2003), "The natural fire safety concept-full-scale tests at Cardington", Fire Saf J., 38(7), 623-643. https://doi.org/10.1016/S0379-7112(03)00028-6.
  18. Lie, T.T. (1992). Structural Fire Protection: Manual of Practice. American Society of Civil Engineers.
  19. Lyu, X., Wang, W., Li, H., Li, J. and Yu, Y. (2024), "Numerical and experimental analysis on the axial compression performance of T-shaped concrete-filled thin-walled steel", Steel Compos. Struct., 50(4), 383-401. https://doi.org/10.12989/scs.2024.50.4.383.
  20. Martinez, J. and Jeffers, A.E. (2021), "Structural response of steel-concrete composite floor systems under traveling fires", J. Constr. Steel Res., 186. https://doi.org/10.1016/j.jcsr.2021.106926.
  21. Meacham, B., Engelhardt, M. and Kodur, V. (2009), "Collection of data on fire and collapse", Faculty of Architecture Building, Delft University of Technology." undefined.
  22. Medall, D., Ibanez, C., Espinos, A. and Romero, M.L. (2023), "Thermo-mechanical compression tests on steel-reinforced concrete-filled steel tubular stub columns with high performance materials", Steel Compos. Struct., 49(5), 533-546. https://doi.org/10.12989/scs.2023.49.5.533.
  23. Mortazavi, S.J., Mansouri, I., Awoyera, P.O. and Hu, J.W. (2022), "Comparison of thermal performance of steel moment and eccentrically braced frames", J. Build. Eng., 49, 104052. https://doi.org/10.1016/J.JOBE.2022.104052.
  24. Mortazavi, S.J., Mansouri, I., Awoyera, P.O. and Naser, M.Z. (2020), "Implementation of new elements and material models in OpenSees software to account for post-earthquacke fire damage", Struct., 27, 1777-1785. https://doi.org/10.1016/J.ISTRUC.2020.08.021.
  25. Naser, M.Z. (2019). "AI-based cognitive framework for evaluating response of concrete structures in extreme conditions", Eng. Appl. Artif. Intell., 81, 437-449. https://doi.org/10.1016/J.ENGAPPAI.2019.03.004.
  26. Perera, D., Upasiri, I.R., Poologanathan, K., Perampalam, G., O'Grady, K., Rezazadeh, M., Rajanayagam, H. and Hewavitharana T. (2022), "Fire performance analyses of modular wall panel designs with loadbearing SHS columns", Case Stud. Constr. Mater., 17, e01179. https://doi.org/10.1016/J.CSCM.2022.E01179.
  27. Prakash, P.R. and G. Srivastava. 2017a. "Efficient three dimensional nonlinear thermo-mechanical analysis of structures subjected to fire", Procedia Eng.
  28. Prakash, P.R. and Srivastava, G. (2017b), "Nonlinear analysis of reinforced concrete plane frames exposed to fire using direct stiffness method", 21(7), 1036-1050. SAGE PublicationsSage, https://doi.org/10.1177/1369433217737118.
  29. Purkiss, J.A. (2007), Fire Safety Engineering: Design of Structures. Butterworth-Heinemann.
  30. Rahal, N., Souici, A., Beghdad, H., Tehami, M., Djaffari, D., Sadoun, M. and Benmahdi, K. (2024), "Effects of shrinkage in composite steel-concrete beam subjected to fire", Steel Compos. Struct., 50(4), 375-382. https://doi.org/10.12989/scs.2024.50.4.375.
  31. Rose, P.S., Bailey, C.G., Burgess, I.W. and Plank. R.J. (1998), "Influence of floor slabs on the structural performance of the Cardington frame in fire", J. Constr. Steel Res., 46(13). https://doi.org/10.1016/S0143-974X(98)00131-X.
  32. Shayanfar, M., Abbasnia, R. and Khodam, A. (2014), "Development of a GA-based method for reliability-based optimization of structures with discrete and continuous design variables using OpenSees and Tcl", Finite Elem. Anal. Des, 90, 61-73. https://doi.org/10.1016/J.FINEL.2014.06.010.
  33. Srivastava, G. and Ravi Prakash, P. (2017), "An integrated framework for nonlinear analysis of plane frames exposed to fire using the direct stiffness method", Comput. Struct., 190, 173-185. https://doi.org/10.1016/J.COMPSTRUC.2017.05.013.
  34. Suntharalingam, T., Gatheeshgar, P., Upasiri, I., Poologanathan, K., Nagaratnam, B., Corradi, M. and Nuwanthika, D. (2021), "Fire performance of innovative 3D printed concrete composite wall panels - A Numerical study", Case Stud. Constr. Mater., 15, e00586. https://doi.org/10.1016/J.CSCM.2021.E00586.
  35. Wang, H., Dembsey, N.A., Meacham, B.J., Liu, S. and Simeoni, A. (2021), "Comparison of sensitivity matrix method, power function-based response surface method, and artificial neural network in the analysis of building fire egress performance", J. Build. Eng., 43, 102860. https://doi.org/10.1016/J.JOBE.2021.102860.
  36. Wang, L., Zhao, W., Liu, C. and Pang, Q. (2023), "Numerical study on the impact response of SC walls under elevated temperatures", Steel Compos. Struct, 46(3), 345-352. https://doi.org/10.12989/scs.2023.46.3.345.
  37. Wang, Y.C. (2000), "An analysis of the global structural behaviour of the Cardington steel-framed building during the two BRE fire tests", Eng. Struct., 22(5), 401-412. https://doi.org/10.1016/S0141-0296(98)00127-8.
  38. Yang, D., Liu, F., Huang, S.S. and Yang, H. (2020), "ISO 834 standard fire test and mechanism analysis of square tubed-reinforced-concrete columns", J. Constr. Steel Res., 175. https://doi.org/10.1016/j.jcsr.2020.106316.
  39. Zhu, A., Wu, H. and Liu, J. (2022), "Feasibility study on novel fire-resistant coating materials", J. Mater. Civ. Eng., 34(6), 04022080. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004233/ASSET/29638C59-6DE4-433D-9859-806A26CBCC56/ASSETS/IMAGES/LARGE/FIGURE10.JPG.