DOI QR코드

DOI QR Code

Nonlinear bending of multilayer functionally graded graphene-reinforced skew microplates under mechanical and thermal loads using FSDT and MCST: A study in large deformation

  • J. Jenabi (Department of Mechanical Engineering, Arak Branch, Islamic Azad University) ;
  • A.R. Nezamabadi (Department of Mechanical Engineering, Arak Branch, Islamic Azad University) ;
  • M. Karami Khorramabadi (Department of Mechanical Engineering, Khorramabad Branch, Islamic Azad University)
  • Received : 2024.01.29
  • Accepted : 2024.04.08
  • Published : 2024.05.10

Abstract

In current study, for the first time, Nonlinear Bending of a skew microplate made of a laminated composite strengthened with graphene nanosheets is investigated. A mixture of mechanical and thermal stresses is applied to the plate, and the reaction is analyzed using the First Shear Deformation Theory (FSDT). Since different percentages of graphene sheets are included in the multilayer structure of the composite, the characteristics of the composite are functionally graded throughout its thickness. Halpin-Tsai models are used to characterize mechanical qualities, whereas Schapery models are used to characterize thermal properties. The microplate's non-linear strain is first calculated by calculating the plate shear deformation and using the Green-Lagrange tensor and von Karman assumptions. Then the elements of the Couple and Cauchy stress tensors using the Modified Coupled Stress Theory (MCST) are derived. Next, using the Hamilton Principle, the microplate's governing equations and associated boundary conditions are calculated. The nonlinear differential equations are linearized by utilizing auxiliary variables in the nonlinear solution by applying the Frechet approach. The linearized equations are rectified via an iterative loop to precisely solve the problem. For this, the Differential Quadrature Method (DQM) is utilized, and the outcomes are shown for the basic support boundary condition. To ascertain the maximum values of microplate deflection for a range of circumstances-such as skew angles, volume fractions, configurations, temperatures, and length scales-a parametric analysis is carried out. To shed light on how the microplate behaves in these various circumstances, the resulting results are analyzed.

Keywords

References

  1. Al-Mashat, L., Shin, K., Kalantar-Zadeh, K., Plessis, J.D., Han, S.H., Kojima, R.W., ... & Wlodarski, W. (2010), "Graphene/polyaniline nanocomposite for hydrogen sensing", J. Phys. Chem. C, 114(39), 16168-16173. https://doi.org/10.1021/jp103134u.
  2. Amir, S., Arshid, E. and Ghorbanpour Arani, A. (2020), "Vibration analysis of magnetorheological fluid circular sandwich plates with magnetostrictive facesheets exposed to monotonic magnetic field located on visco-pasternak substrate", J. Vib. Control, 26(17-18), 1523-1537. https://doi.org/10.1177/1077546319899203. 
  3. Arefi, M. and Adab, N. (2021), "Coupled stress based formulation for static and dynamic analyses of a higher-order shear and normal deformable FG-GPL reinforced microplates", Wave. Random Complex Media, 2021, 1-26. https://doi.org/10.1080/17455030.2021.1989084.
  4. Arshid, A., Ghorbani, M.A., Momeni Nia, M.J., Civalek, O. and Kumar, A. (2023), "Thermo-elastic buckling behaviors of advanced fluid-infiltrated porous shells integrated with GPLs-reinforced nanocomposite patches", Mech. Adv. Mater. Struct., 1-17. https://doi.org/10.1080/15376494.2023.2251015.
  5. Arshid, A., Momeni Nia, M.J., Ghorbani, M.A., Civalek, O. and Kumar, A. (2023), "On the poroelastic vibrations of lightweight FGSP doubly-curved shells integrated with GNPs-reinforced composite coatings in thermal atmospheres", Appl. Math. Model., 124, 122-141. https://doi.org/10.1016/j.apm.2023.07.036.
  6. Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin Wall. Struct., 125, 220-233. https://doi.org/10.1016/j.tws.2018.01.007.
  7. Arshid, E., Amir, S. and Loghman, A. (2020), "Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT", Int. J. Mech. Sci., 180, 105656. https://doi.org/10.1016/j.ijmecsci.2020.105656.
  8. Arshid, E., Amir, S. and Loghman, A. (2021), "Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates", Aerosp. Sci. Technol., 111, 106561. https://doi.org/10.1016/j.ast.2021.106561.
  9. Arshid, E., Amir, S. and Loghman, A. (2023), "On the vibrations of FG GNPs-RPN annular plates with piezoelectric/metallic coatings on Kerr elastic substrate considering size dependency and surface stress effects", Acta Mechanica, 234(9), 4035-4076. https://doi.org/10.1007/s00707-023-03593-4.
  10. Arshid, E., Amir, S. and Loghman, A. (2023), "Thermoelastic vibration characteristics of asymmetric annular porous reinforced with nano-fillers microplates embedded in an elastic medium: CNTs Vs. GNPs", Arch. Civil Mech. Eng., 23(2), 100. https://doi.org/10.1007/s43452-023-00624-8.
  11. Arshid, E., Amir, S. and Loghman, A. (2023), "Aero-Hygro-Thermoelastic size-dependent analysis of NCMF-reinforced GNPs sector microplates located between piezoelectric patches in supersonic flow considering surface stress effects", Mech. Bas. Des. Struct. Mach., 1-62. https://doi.org/10.1080/15397734.2023.2295532.
  12. Arshid, E., Amir, S., Loghman, A. and Civalek, O. (2023), "Aerodynamic stability and free vibration of FGP-Reinforced nano-fillers annular sector microplates exposed to supersonic flow", Thin Wall. Struct., 197, 111610. https://doi.org/10.1016/j.tws.2024.111610.
  13. Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2022), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01382-y.
  14. Arshid, E., Khorshidvand, A.R. and Khorsandiju, S.M. (2019), "The effect of porosity on free vibration of SPFG circular plates resting on visco-pasternak elastic foundation based on CPT, FSDT and TSDT", Struct. Eng. Mech., 70(1), 97-112. https://doi.org/10.12989/sem.2019.70.1.097.
  15. Arshid, E., Soleimani Javid, Z. and Amir, S. (2022), "Higher-order hygro-magneto-electro-thermomechanical analysis of FG-GNPs-reinforced composite cylindrical shells embedded in PEM layers", Aerosp. Sci. Technol., 126, 107573. https://doi.org/10.1016/j.ast.2022.107573.
  16. Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Rev., 49(1), 1. https://doi.org/10.1115/1.3101882.
  17. Chandra, Y., Chowdhury, R., Scarpa, F., Adhikari, S., Sienz, J., Arnold, C., ... & Bould, D. (2012), "Vibration frequency of graphene based composites: a multiscale approach", Mater. Sci. Eng.: B, 177(3), 303-310. https://doi.org/10.1016/j.mseb.2011.12.024.
  18. Chu, K., Jia, C.C. and Li, W.S. (2012), "Effective thermal conductivity of graphene-based composites", Appl. Phys. Lett., 101(12), 121916. https://doi.org/10.1063/1.4754120.
  19. Farahani, S.M., Jafari Mehrabadi, S. and Mohammadi, S.V. (2024), "Vibration analysis of a smart viscoelastic porous sandwich micro-shell with magnetorheological fluid core using modified couple stress theory", Wave. Random Complex Media, 1-31. https://doi.org/10.1080/17455030.2024.2325483.
  20. Ghasemi, A.R., Taheri-Behrooz, F., Farahani, S.M.N. and Mohandes, M. (2014), "Nonlinear free vibration of an Euler-Bernoulli composite beam undergoing finite strain subjected to different boundary conditions", J. Vib. Control, 22(3), 799-811. https://doi.org/10.1177/1077546314528965.
  21. Ghorbanpour Arani, A., Kolahchi, R., Mosallaie Barzoki, AA., Mozdianfard, M.R. and Noudeh Farahani, S.M. (2012), "Elastic foundation effect on nonlinear thermo-vibration of embedded double-layered orthotropic grapheme sheets using differential quadrature method", Proc. IMechE Part C: J. Mech. Eng. Sci., 227(4), 862-879. https://doi.org/10.1177/0954406212453808.
  22. Arani, A.G., Shirali, A.A., Farahani, M.N., Amir, S. and Loghman, A. (2013), "Nonlinear vibration analysis of protein microtubules in cytosol conveying fluid based on nonlocal elasticity theory using differential quadrature method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 227(1), 137-145. https://doi.org/10.1177/0954406212445151.
  23. Jafari Mehrabadi, S. and Nodeh Farahani, S.M. (2018), "Nonlinear free vibration of reinforced skew plates with SWCNs due to finite strain", Adv. Appl. Math. Mech., 10(6), 1344-1364. https://doi.org/10.4208/aamm.OA-2017-0241.
  24. Jiang, S.D., Bai, Z.M., Tang, G., Hu, Y. and Song, L. (2014), "Fabrication and characterization of graphene oxide-reinforced poly (vinyl alcohol)-based hybrid composites by the sol-gel method", Compos. Sci. Technol., 102, 51-58. https://doi.org/10.1016/j.compscitech.2014.06.029.
  25. Kargar, J., Ghorbanpour Arani, A., Arshid, E. and Irani Rahaghi, M. (2021), "Vibration analysis of spherical sandwich panels with MR fluids core and MEE face sheets resting on orthotropic viscoelastic foundation", Struct. Eng. Mech., 78(5), 557-572. https://doi.org/10.12989/sem.2021.78.5.557.
  26. Khorasani, M., Soleimani-Javid, Z., Arshid, E., Amir, S. and Civalek, O. (2021), "Vibration analysis of graphene nanoplatelets' reinforced composite plates integrated by piezo-electromagnetic patches on the piezo-electromagnetic media", Wave. Random Complex Media, 1-31. https://doi.org/10.1080/17455030.2021.1956017.
  27. Malik, M. (1994), "Differential quadrature method in computational mechanics: New developments and applications", Doctoral Dissertation, The University of Oklahoma.
  28. Milani, M.A., Gonzalez, D., Quijada, R., Basso, N.R., Cerrada, M.L., Azambuja, D.S. and Galland, G.B. (2013), "Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties", Compos. Sci. Technol., 84, 1-7. https://doi.org/10.1016/j.compscitech.2013.05.001.
  29. Mohammadimehr, M., Arshid, E., Rasti Alhoseini, S.M.A., Amir, S. and Ghorbanpour Arani, M.R. (2019), "Free vibration analysis of thick cylindrical magneto-electro-elastic (MEE) composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation", Struct. Eng. Mech., 70(6), 683-702. https://doi.org/10.12989/sem.2019.70.6.683.
  30. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.E., Zhang, Y., Dubonos, S.V., ... & Firsov, A.A. (2004), "Electric field effect in atomically thin carbon films", Sci., 306(5696), 666-669. 10.1126/science.1102896.
  31. Novoselov, K.S., Jiang, D., Booth, T., Khotkevich, V.V., Morozov, S.M. and Geim, A.K. (2005), "Two-dimensional atomic crystals", Proceedings of the National Academy of Sciences, USA, July.
  32. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.
  33. Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Secend Edition, CRC Press, New York, NY, USA.
  34. Shen, H.S., Xiang, Y. and Lin, F. (2017), "Nonlinear bending of functionally graded graphene-reinforced composite laminated plates resting on elastic foundations in thermal environments", Compos. Struct., 170, 80-90. https://doi.org/10.1016/j.compstruct.2017.03.001.
  35. Shu, C. and Chen, W. (1999), "On optimal selection of interior points for applying discretized boundary conditions in DQ vibration analysis of beams and plates", J. Sound Vib., 222(2), 239-257. https://doi.org/10.1006/jsvi.1998.2041.
  36. Singha, M. and Daripa, R. (2007), "Nonlinear vibration of symmetrically laminated composite skew plates by finite element method", Int. J. Nonlin. Mech., 42(9), 1144-1152. https://doi.org/10.1016/j.ijnonlinmec.2007.08.001.
  37. Sun, Y. and Shi, G. (2013), "Graphene/polymer composites for energy applications", J. Polym. Sci. Part B: Polym. Phys., 51(4), 231-253. https://doi.org/10.1002/polb.23226.
  38. Thai, H.T. and Choi, D.H. (2013), "Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory", Compos. Struct., 95, 142-153. https://doi.org/10.1016/j.compstruct.2012.08.023.
  39. Wang, M., Xu, Y. G., Qiao, P. and Li, Z. M. (2022), "Buckling and free vibration analysis of shear deformable graphene-reinforced composite laminated plates", Compos. Struct., 280, 114854. https://doi.org/10.1016/j.compstruct.2021.114854.
  40. Yang, Y.H., Bolling, L., Priolo, Morgan A. and Grunlan Jaime, C. (2013), "Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films", Adv. Mater., 25(4), 503-508. https://doi.org/10.1002/adma.201202951.
  41. Zavari, S., Kaveh, A., Babaei, H. and Arshid, E. (2024), "A quasi-3D hyperbolic formulation for the buckling study of metal foam microplates layered with graphene nanoplatelets-embedded nanocomposite patches with temperature fluctuations", Compos. Struct., 331, 117876. https://doi.org/10.1016/j.compstruct.2024.117876.