DOI QR코드

DOI QR Code

소집단 모형구성 수업 진행에서 나타난 초임 과학 교사의 인식론적 프레이밍 변화 탐색 -'빈칸 채우기'에서 '사회적 추론 구성'으로-

Changes in a Novice Teacher's Epistemological Framing for Facilitating Small-Group Modeling: From "Filling in Blanks" to "Social Construction of Scientific Reasoning"

  • 투고 : 2024.02.22
  • 심사 : 2024.03.26
  • 발행 : 2024.04.30

초록

본 연구의 목적은 초임 과학 교사가 소집단 모형구성 활동을 운영하며 어떤 인식론적 프레이밍을 보였는지 탐색하고, 연구자와 함께 수업을 설계, 진행, 성찰한 경험이 교사의 인식론적 프레이밍 변화에 어떻게 기여했는지를 이해하는 것이었다. 우리는 경력 2년 차의 초임과학 교사 1명을 사례로 연구하였다. 교사는 약 4개월간 2개 학급에서 소집단 모형구성 활동이 포함된 18차시의 수업을 운영하였으며, 교사의 수업 실행 전후에는 교사-연구자 사이의 협력적 성찰이 13회 이루어졌다. 교사의 수업 실행과 협력적 성찰은 모두 녹화 녹음되었으며 전사되어 질적으로 분석되었다. 우리는 발화 단위로 인식론과 관련된 요소들을 귀납적으로 추출하고, 이러한 발화가 일관성 있게 나타난 부분을 찾아 교사의 인식론적 프레이밍을 유추하였다. 연구 결과, 교사의 인식론적 프레이밍은 단원 초반부에 '빈칸 채우기' 프레이밍, 중반부에 '개인적 추론 구성하기' 프레이밍, 후반부에 '사회적 추론 구성하기' 프레이밍으로 각각 다르게 나타났으며, 소집단 모형구성활동에서 교사와 학생의 역할에 대한 교사의 관점이 뚜렷하게 구분되었다. 이러한 변화는 교사가 연구자와 협력하여 모형구성 수업을 계획, 진행하고 성찰하며, 학생들의 가능성과 달라진 실행을 꾸준히 관찰하면서 나타났다. '빈칸 채우기' 프레이밍에서 '개인적 추론 구성하기' 프레이밍으로의 전환에는 교사가 소집단 모형구성 활동을 운영하고 협력적 성찰하는 과정에서 학생들을 관찰하며 학생들의 능력에 대해 새로운 인식을 가지게 된 것이 중요했다. '개인적 추론 구성하기' 프레이밍에서 '사회적 추론 구성하기' 프레이밍으로의 전환에는 교사가 연구자와의 협업으로 교실에서 사회적 상호작용 장을 형성하여 협력적 지식 구성의 가치를 인식하게 된 것이 중요한 역할을 했다. 이 연구 결과는 소집단 모형구성 활동을 운영하는 교사를 지원하는 교사 교육 방안을 모색하는 데 시사점을 제공할 수 있을 것이다.

The aim of this study was to explore how a novice science teacher's epistemological framing, characterized from her modeling instruction, evolved over time. We observed that the teachers' framing changed over time, as she collaborated with researchers to plan, facilitate, and reflect on a series of lessons to support students' small-group scientific modeling. We tried to understand how such experiences contributed to the changes in her framing. One 8th grade science teacher with two years of teaching experience participated in the study. The teacher collaborated with researchers for four months to co-plan and facilitate 18 lessons that included small-group scientific modeling. She also engaged in cogenerative reflection on the lessons for 13 times. All of her lessons and reflections were video-recorded, transcribed, and qualitatively analyzed for the purpose of the study. Our findings showed that the teacher's epistemological framing, characterized from her interactions with students during modeling lessons, evolved during the study period: transitioning from an emphasis on students merely "filling in blanks" to prioritizing "constructing personal reasoning" and ultimately to focusing on the "social construction of scientific reasoning." The teacher's perception about what students are capable of changed, as she observed students during the modeling lessons, and this led to the shifts in her framing. Furthermore, through her engagement in planning, implementing, and reflecting on modeling lessons with researchers, she came to recognize the value of student collaboration in knowledge-building processes. These results can offer implications for supporting and studying teachers' epistemological framing and modeling-based teaching by partnering with them.

키워드

과제정보

이 논문은 4단계 두뇌한국 BK21 '인포스피어 과학교육연구단'의 지원을 받아 수행된 연구입니다.

참고문헌

  1. Acher A., Arca M., & Sanmarti N. (2007). Modeling as a teaching learning process for understanding materials: A case study in primary education. Science Education, 91(3), 398-418.  https://doi.org/10.1002/sce.20196
  2. Berland, L. K., & Hammer, D. (2012). Framing for scientific argumentation. Journal of Research in Science Teaching, 49(1), 68-94.  https://doi.org/10.1002/tea.20446
  3. Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26-55.  https://doi.org/10.1002/sce.20286
  4. Bing, T. J., & Redish, E. F. (2009). Analyzing problem solving using math in physics: Epistemological framing via warrants. Physical Review Special Topics-Physics Education Research, 5(2), 020108. 
  5. Brockbank, A., & McGill, I. (2012) Facilitating reflective learning: Coaching, mentoring and supervision. London, UK: Kogan Page. 
  6. Cheng, M. F., & Brown, D. E. (2010). Conceptual resources in self-developed explanatory models: The importance of integrating conscious and intuitive knowledge. International Journal of Science Education, 32(17), 2367-2392.  https://doi.org/10.1080/09500690903575755
  7. Clement, J. J. (Ed.). (2008). Creative model construction in scientists and students. Dordrecht, The Netherlands: Springer. 
  8. Crawford, B. A. (2000). Embracing the essence of inquiry: New roles for science teachers. Journal of Research in Science Teaching, 37(9), 916-937.  https://doi.org/10.1002/1098-2736(200011)37:9<916::AID-TEA4>3.0.CO;2-2
  9. Crawford, B. A., & Cullin, M. J. (2002). Engaging prospective science teachers in building, testing, and teaching about models. Paper presented at the Annual Conference of the National Association for Research in Science Teaching. New Orleans, LA, United States. 
  10. Cullin, M. J., & Crawford, B. A. (2004). The interplay between prospective science teachers' modeling strategies and understandings. Paper presented at the Annual Conference of the National Association for Research in Science Teaching. Vancouver, British Columbia, Canada. 
  11. Dewey, J. (1933). How we think: A restatement of the relation of reflective thinking to the educative process. Boston, MA: D. C. Heath & Co Publishers. 
  12. Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312.  https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  13. Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academies Press. 
  14. Elby, A., & Hammer, D. (2010). Epistemological resources and framing: A cognitive framework for helping teachers interpret and respond to their students' epistemologies. In L. D. Bendixen & F. C. Feucht (Ed.), Personal epistemology in the classroom: Theory, research, and implications for practice (pp. 409-434). Cambridge, UK: Cambridge University Press. 
  15. Erduran, S., & Jimenez-Aleixandre, M. P. (2008). Argumentation in science education. Perspectives from classroom-Based Research. Dordrecht, The Netherlands: Springer. 
  16. Gilbert, J. K., & Justi, R. (2016). The role of argumentation in modelling-based teaching. In J. K. Gilbert & R. Justi (Eds.), Modelling-based teaching in science education (pp. 97-120). New York, NY: Springer. 
  17. Gonzalez-Howard, M., & McNeill, K. L. (2019). Teachers' framing of argumentation goals: Working together to develop individual versus communal understanding. Journal of Research in Science Teaching, 56(6), 821-844.  https://doi.org/10.1002/tea.21530
  18. Guy-Gaytan, C., Gouvea, J. S., Griesemer, C., & Passmore, C. (2019). Tensions between learning models and engaging in modeling: Exploring implications for science classrooms. Science & Education, 28, 843-864.  https://doi.org/10.1007/s11191-019-00064-y
  19. Ha, H., Lee, Y., & Kim, H. B. (2018). Exploring the teachers' responsive teaching practice and epistemological framing in whole class discussion after small group argumentation activity. Journal of the Korean Association for Science Education, 38(1), 11-26. 
  20. Hammer, D., & Elby, A. (2002). On the form of a personal epistemology. In B. K. Hofer & P. R. Pintrich (Eds.), Personal epistemolgy: The psychology of beliefs about knowledge and knowing (pp. 169-190). Mahwah, NJ: Routledge. 
  21. Hammer, D., & Elby, A. (2003). Tapping epistemological resources for learning physics. Journal of the Learning Sciences, 12(1), 53-90.  https://doi.org/10.1207/S15327809JLS1201_3
  22. Hammer, D., Elby, A., Scherr, R. E., & Redish, E. F. (2005). Resources, framing, and transfer. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 89-119). Greenwich, CT: Information Age Publishing. 
  23. Hofer, B. K., & Pintrich, P. R. (2012). Personal epistemology: The psychology of beliefs about knowledge and knowing. New York, NY: Routledge. 
  24. Hutchison, P., & Hammer, D. (2010). Attending to student epistemological framing in a science classroom. Science Education, 94(3), 506-524.  https://doi.org/10.1002/sce.20373
  25. Jimenez-Aleixandre, M. P., Bugallo Rodriguez, A., & Duschl, R. A. (2000). "Doing the lesson" or "doing science": Argument in high school genetics. Science Education, 84(6), 757-792.  https://doi.org/10.1002/1098-237X(200011)84:6<757::AID-SCE5>3.0.CO;2-F
  26. Jo, A. R. (2016). Understanding of pedagogical content knowledge on the middle school science teacher's teaching practice in a co-construction of scientific models (Master's thesis). Seoul National University. 
  27. Justi, R. S., & Gilbert, J. K. (2002). Science teachers' knowledge about and attitudes towards the use of models and modelling in learning science. International Journal of Science Education, 24(12), 1273-1292.  https://doi.org/10.1080/09500690210163198
  28. Justi, R. S., & Gilbert, J. K. (2003). Teachers' views on the nature of models. International Journal of Science Education, 25(11), 1369-1386.  https://doi.org/10.1080/0950069032000070324
  29. Kademian, S. M., &Davis, E. A. (2018). Supporting beginning teacher planning of investigation-based science discussions. Journal of Science Teacher Education, 29(8), 712-740. 
  30. Kang, E. H., Kim, C. J., Choe, S. U., Yoo, J. H., Park, H. J., Lee, S. Y., & Kim, H. B. (2012). Small group interaction and norms in the process of constructing a model for blood flow in the heart. Journal of the Korean Association for Science Education, 32(2), 372-387.  https://doi.org/10.14697/jkase.2012.32.2.372
  31. Kang, H., & Anderson, C. W. (2015). Supporting preservice science teachers' ability to attend and respond to student thinking by design. Science Education, 99(5), 863-895. 
  32. Kang, H., Windschitl, M., Stroupe, D., & Thompson, J. (2016). Designing, launching, and implementing high quality learning opportunities for students that advance scientific thinking. Journal of Research in Science Teaching, 53(9), 1316-1340.  https://doi.org/10.1002/tea.21329
  33. Kang, N. H., & Wallace, C. S. (2005). Secondary science teachers' use of laboratory activities: Linking epistemological beliefs, goals, and practices. Science Education, 89(1), 140-165.  https://doi.org/10.1002/sce.20013
  34. Khishfe, R., & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders' views of nature of science. Journal of Research in Science Teaching, 39(7), 551-578.  https://doi.org/10.1002/tea.10036
  35. Kim, B., & Kim, H. B. (2019). Exploring Characteristics and Limitations of a Novice Teacher's Responsive Teaching Practice in Small Group Scientific Argumentation: Focus on Framing. Journal of the Korean Association for Science Education, 39(6), 739-753. 
  36. Lau, M. (2010). Understanding the dynamics of teacher attention: Examples of how high school physics and physical science teachers attend to student ideas (Doctoral dissertation). University of Maryland. 
  37. LaVan, S. K., & Beers, J. (2005). The role of cogenerative dialogue in learning to teach and transforming learning environments. In K. Tobin, R. Elmesky, & G. Seiler (Eds.), Improving urban science education: New roles for teachers, students and researchers (pp. 147-164). New York, NY: Rowan & Littlefield. 
  38. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press. 
  39. Lederman, N. G. (1992). Students' and teachers' conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331-359. 
  40. Lee, E. J., Yun, S. M., & Kim, H. B. (2015). Exploring small group argumentation and epistemological framing of gifted science students as revealed by the analysis of their responses to anomalous data. Journal of the Korean Association for Science Education, 35(3), 419-429.  https://doi.org/10.14697/JKASE.2015.35.3.0419
  41. Lee, S. (1999). A Qualitative Analysis of Individual and Collaborative Reflection. International Journal of Educational Technology, 1(1), 287-305. 
  42. Lee, S., Kim, C. J., Choe, S. U., Yoo, J., Park, H., Kang, E., & Kim, H. B. (2012). Exploring the patterns of group model development about blood flow in the heart and reasoning process by small group interaction. Journal of the Korean Association for Science Education, 32(5), 805-822.  https://doi.org/10.14697/JKASE.2012.32.5.805
  43. Lehrer, R., & Schauble, L. (2005). Cultivating model-based reasoning in science education. In R. K. Sawyer (Ed.). The Cambridge handbook of the learning sciences (pp. 371-388). Cambridge, UK: Cambridge University Press. 
  44. Levin, D. M., Hammer, D., & Coffey, J. E. (2009). Novice teachers' attention to student thinking. Journal of Teacher Education, 60(2), 142-154.  https://doi.org/10.1177/0022487108330245
  45. Lidar, M., Lundqvist, E., & Ostman, L. (2006). Teaching and learning in the science classroom: The interplay between teachers' epistemological moves and students' practical epistemology. Science Education, 90(1), 148-163. 
  46. Louca, L. T., Zacharia, Z. C., & Constantinou, C. P. (2011). In Quest of productive modeling-based learning discourse in elementary school science. Journal of Research in Science Teaching, 48(8), 919-951.  https://doi.org/10.1002/tea.20435
  47. Martin, S. (2006). Where practice and theory intersect in the chemistry classroom: Using cogenerative dialogue to identify the critical point in science education. Cultural Studies of Science Education, 1(4), 693-720.  https://doi.org/10.1007/s11422-006-9031-z
  48. Mortimer, E., & Scott, P. (2003). Meaning making in secondary science classrooms. Maidenhead, UK: Open University Press. 
  49. Neilson M., Davis E. (2012). Pre-service Elementary Teachers' Evaluations of Elementary Students' Scientific Models: An aspect of pedagogical content knowledge for scientific modeling. International Journal of Science Education, 34(12), pp. 1-29. 
  50. Oliveira, A. W., & Sadler, T. D. (2008). Interactive patterns and conceptual convergence during student collaborations in science. Journal of Research in Science Teaching, 45(5), 634-658.  https://doi.org/10.1002/tea.20211
  51. Passmore, C. M., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535-1554. 
  52. Pimentel, D. S., & McNeill, K. L. (2013). Conducting talk in secondary science classrooms: Investigating instructional moves and teachers' beliefs. Science Education, 97(3), 367-394.  https://doi.org/10.1002/sce.21061
  53. Pluta, W. J., Chinn, C. A., & Duncan, R. G. (2011). Learners' epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48(5), 486-511. 
  54. Radoff, J., & Hammer, D. (2015). Attention to student framing in responsive teaching. In A. D. Robertson, R. Scherr, & D. Hammer (Eds.), Responsive teaching in science and mathematics (pp. 189-202). New York, NY: Routledge. 
  55. Redish, E. F. (2004). A theoretical framework for physics education research: Modeling student thinking. In E. Redish & M. Vicentini (Eds.), Proceedings of the Enrico Fermi Summer School, Course CLVI (pp. 1-50). Bologna, Italy: Italian Physical Society. 
  56. Richards, J., Elby, A., Luna, M. J., Robertson, A. D., Levin, D. M., & Nyeggen, C. G. (2020). Reframing the responsiveness challenge: A framing-anchored explanatory framework to account for irregularity in novice teachers' attention and responsiveness to student thinking. Cognition and Instruction, 38(2), 116-152.  https://doi.org/10.1080/07370008.2020.1729156
  57. Rosenberg, S., Hammer, D., & Phelan, J. (2006). Multiple epistemological coherences in an eighth-grade discussion of the rock cycle. The Journal of the Learning Sciences, 15(2), 261-292.  https://doi.org/10.1207/s15327809jls1502_4
  58. Roth, W. M., Robin, K., & Zimmermann, A. (2002). Coteaching/cogenerative dialoguing: Learning environments research as classroom praxis. Learning Environments Research, 5, 1-28.  https://doi.org/10.1023/A:1015662623784
  59. Russ, R. S., & Luna, M. J. (2013). Inferring teacher epistemological framing from local patterns in teacher noticing. Journal of Research in Science Teaching, 50(3), 284-314. 
  60. Russ, R. S., Lee, V. R., & Sherin, B. L. (2012). Framing in cognitive clinical interviews about intuitive science knowledge: Dynamic student understandings of the discourse interaction. Science Education, 96(4), 573-599.  https://doi.org/10.1002/sce.21014
  61. Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513-536.  https://doi.org/10.1002/tea.20009
  62. Sampson, V., & Clark, D. (2009). The impact of collaboration on the outcomes of scientific argumentation. Science Education, 93(3), 448-484.  https://doi.org/10.1002/sce.20306
  63. Sandoval, W. A. (2005). Understanding students' practical epistemologies and their influence on learning through inquiry. Science Education, 89(4), 634-656.  https://doi.org/10.1002/sce.20065
  64. Schwarz, C. V., & White, B. Y. (2005). Metamodeling knowledge: Developing students' understanding of scientific modeling. Cognition and Instruction, 23(2), 165-205.  https://doi.org/10.1207/s1532690xci2302_1
  65. Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Acher, A., Fortus, D., ... &Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654.  https://doi.org/10.1002/tea.20311
  66. Shim, S. Y. (2020). Exploring How a High School Science Teacher's Understanding and Facilitation of Scientific Modeling Shifted through Participation in a Professional Learning Community. Journal of the Korean Association for Science Education, 40(1), 29-40. 
  67. Shim, S. Y., & Kim, H. B. (2018). Framing negotiation: Dynamics of epistemological and positional framing in small groups during scientific modeling. Science Education, 102(1), 128-152.  https://doi.org/10.1002/sce.21306
  68. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14.  https://doi.org/10.2307/1175860
  69. Simon, S., Erduran, S., & Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28(2-3), 235-260. 
  70. Simon, S., Richardson, K., & Amos, R. (2012). The design and enactment of argumentation activities. In M. S. Khine (Ed.), Perspectives on scientific argumentation: Theory, practice, and research (pp. 97-115). Dordrecht, The Netherlands: Springer. 
  71. Stansbury, K., & Zimmerman, J. (2000). Lifelines to the Classroom: Designing Support for Beginning Teachers. Knowledge Brief. WestEd. 
  72. Tannen, D. (1993). Framing in discourse. Oxford, UK: Oxford University Press. 
  73. Thompson, J., Hagenah, S., Kang, H., Stroupe, D., Braaten, M., Colley, C., & Windschitl, M. (2016). Rigor and responsiveness in classroom activity. Teachers College Record, 118(5), 1-58. 
  74. Tobin, K. (2006). Learning to teach through coteaching and cogenerative dialogue. Teaching Education, 17(2), 133-142.  https://doi.org/10.1080/10476210600680358
  75. Vygotsky, L. S., & Cole, M. (1978). Mind in society: Development of higher psychological processes. Cambridge, MA: Harvard University Press. 
  76. Wendell, K. B., Swenson, J. E., & Dalvi, T. S. (2019). Epistemological framing and novice elementary teachers' approaches to learning and teaching engineering design. Journal of Research in Science Teaching, 56(7), 956-982.  https://doi.org/10.1002/tea.21541
  77. Windschitl, M., Lohwasser, K., Tasker, T., Shim, S. Y., & Long, C. (2021). Learning to teach science during the clinical experience: Agency, opportunity, and struggle. Science Education, 105(5), 961-988. 
  78. Windschitl, M., Thompson, J., & Braaten, M. (2011). Ambitious pedagogy by novice teachers: Who benefits from tool-supported collaborative inquiry into practice and why?. Teachers College Record, 113(7), 1311-1360.  https://doi.org/10.1177/016146811111300702
  79. Yang, H., & Shim, S. Y. (2023). Learning opportunities in the discourse of a productive professional learning community: Focusing on types of inquiry cycles. Journal of the Korean Association for Science Education, 43(5), 445-458. 
  80. Yun, S. M. (2016). Understanding the establishment of small group norms in productive scientific argumentation (Doctoral dissertation). Seoul National University.