DOI QR코드

DOI QR Code

지반 조건과 TBM 운영 파라미터를 고려한 디스크 커터 마모 예측

Prediction of Disk Cutter Wear Considering Ground Conditions and TBM Operation Parameters

  • 강윤성 (강원대학교 에너지.인프라 융합학과) ;
  • 고태영 (강원대학교 에너지자원.산업공학부)
  • Yunseong Kang (Department of Integrated Energy and Infra System, Kangwon National University) ;
  • Tae Young Ko (Department of Energy and Resources Engineering, Kangwon National University)
  • 투고 : 2024.04.12
  • 심사 : 2024.04.18
  • 발행 : 2024.04.30

초록

TBM 공법은 발파 공법에 비해 굴착 중 소음과 진동 수준이 낮고, 안정성이 높은 터널 굴착 공법이며, 전세계적으로 터널 프로젝트에 TBM 공법을 적용하는 사례가 증가하는 추세이다. 디스크 커터는 TBM의 커터헤드에 장착되는 굴착 도구로 지속적으로 막장면 지반과 상호작용하며, 이때 필연적으로 마모가 발생한다. 본 연구에서는 지질 조건과 TBM 운영파라미터, 머신러닝 알고리즘들을 이용하여 디스크 커터 마모를 정량적으로 예측하였다. 디스크커터 마모 예측의 입력변수 중 UCS 데이터의 수가 다른 기계 데이터 및 마모 데이터에 비해 매우 부족하기 때문에, 먼저 TBM 기계 데이터를 이용하여 전체 구간에 대한 UCS 추정을 진행하고, 완성된 전체 데이터로 마모율 계수 예측을 수행하였다. 마모율 계수 예측 모델의 성능을 비교해 본 결과 XGBoost 모델의 성능이 가장 높게 나타났으며, 복잡한 예측 모델의 해석을 위해 SHapley Additive exPlanation (SHAP) 분석을 진행하였다.

Tunnel Boring Machine (TBM) method is a tunnel excavation method that produces lower levels of noise and vibration during excavation compared to drilling and blasting methods, and it offers higher stability. It is increasingly being applied to tunnel projects worldwide. The disc cutter is an excavation tool mounted on the cutterhead of a TBM, which constantly interacts with the ground at the tunnel face, inevitably leading to wear. In this study quantitatively predicted disc cutter wear using geological conditions, TBM operational parameters, and machine learning algorithms. Among the input variables for predicting disc cutter wear, the Uniaxial Compressive Strength (UCS) is considerably limited compared to machine and wear data, so the UCS estimation for the entire section was first conducted using TBM machine data, and then the prediction of the Coefficient of Wearing rate(CW) was performed with the completed data. Comparing the performance of CW prediction models, the XGBoost model showed the highest performance, and SHapley Additive exPlanation (SHAP) analysis was conducted to interpret the complex prediction model.

키워드

과제정보

이 논문은 2024년도 정부(산업통상자원부)의 재원으로 해외자원개발협회의 지원(2021060003, 스마트 마이닝 전문 인력 양성)과 2024년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.NRF-2022R1F1A1063228)

참고문헌

  1. Amoun, S., Sharifzadeh, M., Shahriar, K., Rostami, J., and Azali, S.T., 2017, Evaluation of tool wear in EPB tunneling of Tehran Metro, Line 7 Expansion, Tunnelling and Underground Space Technology, 61, 233-246. https://doi.org/10.1016/j.tust.2016.11.001
  2. Bergstra, J., Bardenet, R., Bengio, Y., and Kegl, B., 2011, Algorithms for hyper-parameter optimization, Advances in neural information processing systems, 24.
  3. Bruland, A., 1998, Hard rock tunnel boring : Advance rate and cutter wear. NTNU.
  4. BS, B., 1999, 5930: 1999 Code of practice for site investigations, British Standard.
  5. Ding, X., Xie, Y., Xue, H., and Chen, R., 2022, A new approach for developing EPB-TBM disc cutter wear prediction equations in granite stratum using backpropagation neural network, Tunnelling and Underground Space Technology, 128104654.
  6. Elbaz, K., Shen, S.-L., Zhou, A., Yin, Z.-Y., and Lyu, H.-M., 2020, Data in intelligent approach for estimation of disc cutter life using hybrid metaheuristic algorithm, Data in Brief, 33, 106479.
  7. Elbaz, K., Shen, S.L., Zhou, A., Yin, Z.Y., and Lyu, H.M., 2021, Prediction of disc cutter life during shield tunneling with AI via the incorporation of a genetic algorithm into a GMDH-type neural network, Engineering, 7(2), 238-251. https://doi.org/10.1016/j.eng.2020.02.016
  8. Frenzel, C., Kasling, H., and Thuro, K., 2008, Factors influencing disc cutter wear, Geomechanik und Tunnelbau: Geomechanik und Tunnelbau, 1(1), 55-60. https://doi.org/10.1002/geot.200800006
  9. Gehring, K., 1995, Leistungs-und Verschleissprognosen im maschinellen Tunnelbau, Felsbau, 13(6), 439-448.
  10. Kilic, K., Toriya, H., Kosugi, Y., Adachi, T., and Kawamura, Y., 2022, One-Dimensional convolutional neural network for pipe jacking EPB TBM cutter wear prediction, Applied Sciences, 12(5), 2410.
  11. Liu, Q., Liu, J., Pan, Y., Zhang, X., Peng, X., Gong, Q., and Du, L., 2017, A wear rule and cutter life prediction model of a 20-in. TBM cutter for granite: a case study of a water conveyance tunnel in China, Rock Mechanics and Rock Engineering, 50, 1303-1320. https://doi.org/10.1007/s00603-017-1176-4
  12. Loy-Benitez, J., Lee, H.K., Song, M.K., Choi, Y., and Lee, S.S., 2024, Transfer component analysis-driven domain adaptation approach for estimating the life of tunnel boring machine disc cutters, Tunnelling and Underground Space Technology, 147, 105714.
  13. Lundberg, S.M. and Lee, S.I., 2017, A unified approach to interpreting model predictions, Advances in neural information processing systems, 30.
  14. Mahmoodzadeh, A., Mohammadi, M., Ibrahim, H.H., Abdulhamid, S.N., Ali, H.F.H., Hasan, A.M., Khishe, M., and Mahmud, H., 2021, Machine learning forecasting models of disc cutters life of tunnel boring machine, Automation in Construction, 128, 103779.
  15. Rostami, J. and Ozdemir, L., 1993, A new model for performance prediction of hard rock TBMs. In: Proceedings of the rapid excavation and tunneling conference.
  16. Su, W., Li, X., Jin, D., Yang, Y., Qin, R., and Wang, X., 2020, Analysis and prediction of TBM disc cutter wear when tunneling in hard rock strata: a case study of a metro tunnel excavation in Shenzhen, China, Wear, 446, 203190.
  17. Wang, L., Li, H., Zhao, X., and Zhang, Q., 2017, Development of a prediction model for the wear evolution of disc cutters on rock TBM cutterhead, Tunnelling and Underground Space Technology, 67, 147-157. https://doi.org/10.1016/j.tust.2017.05.003
  18. Xu, D., Wang, Y., Huang, J., Liu, S., Xu, S., and Zhou, K., 2023, Prediction of geology condition for slurry pressure balanced shield tunnel with super-large diameter by machine learning algorithms, Tunnelling and Underground Space Technology, 131, 104852.
  19. Yu, H., Tao, J., Qin, C., Xiao, D., Sun, H., and Liu, C., 2021, Rock mass type prediction for tunnel boring machine using a novel semi-supervised method, Measurement, 179, 109545.