과제정보
이 논문은 2024년도 정부(산업통상자원부)의 재원으로 해외자원개발협회의 지원(2021060003, 스마트 마이닝 전문 인력 양성)과 2024년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.NRF-2022R1F1A1063228)
참고문헌
- Amoun, S., Sharifzadeh, M., Shahriar, K., Rostami, J., and Azali, S.T., 2017, Evaluation of tool wear in EPB tunneling of Tehran Metro, Line 7 Expansion, Tunnelling and Underground Space Technology, 61, 233-246. https://doi.org/10.1016/j.tust.2016.11.001
- Bergstra, J., Bardenet, R., Bengio, Y., and Kegl, B., 2011, Algorithms for hyper-parameter optimization, Advances in neural information processing systems, 24.
- Bruland, A., 1998, Hard rock tunnel boring : Advance rate and cutter wear. NTNU.
- BS, B., 1999, 5930: 1999 Code of practice for site investigations, British Standard.
- Ding, X., Xie, Y., Xue, H., and Chen, R., 2022, A new approach for developing EPB-TBM disc cutter wear prediction equations in granite stratum using backpropagation neural network, Tunnelling and Underground Space Technology, 128104654.
- Elbaz, K., Shen, S.-L., Zhou, A., Yin, Z.-Y., and Lyu, H.-M., 2020, Data in intelligent approach for estimation of disc cutter life using hybrid metaheuristic algorithm, Data in Brief, 33, 106479.
- Elbaz, K., Shen, S.L., Zhou, A., Yin, Z.Y., and Lyu, H.M., 2021, Prediction of disc cutter life during shield tunneling with AI via the incorporation of a genetic algorithm into a GMDH-type neural network, Engineering, 7(2), 238-251. https://doi.org/10.1016/j.eng.2020.02.016
- Frenzel, C., Kasling, H., and Thuro, K., 2008, Factors influencing disc cutter wear, Geomechanik und Tunnelbau: Geomechanik und Tunnelbau, 1(1), 55-60. https://doi.org/10.1002/geot.200800006
- Gehring, K., 1995, Leistungs-und Verschleissprognosen im maschinellen Tunnelbau, Felsbau, 13(6), 439-448.
- Kilic, K., Toriya, H., Kosugi, Y., Adachi, T., and Kawamura, Y., 2022, One-Dimensional convolutional neural network for pipe jacking EPB TBM cutter wear prediction, Applied Sciences, 12(5), 2410.
- Liu, Q., Liu, J., Pan, Y., Zhang, X., Peng, X., Gong, Q., and Du, L., 2017, A wear rule and cutter life prediction model of a 20-in. TBM cutter for granite: a case study of a water conveyance tunnel in China, Rock Mechanics and Rock Engineering, 50, 1303-1320. https://doi.org/10.1007/s00603-017-1176-4
- Loy-Benitez, J., Lee, H.K., Song, M.K., Choi, Y., and Lee, S.S., 2024, Transfer component analysis-driven domain adaptation approach for estimating the life of tunnel boring machine disc cutters, Tunnelling and Underground Space Technology, 147, 105714.
- Lundberg, S.M. and Lee, S.I., 2017, A unified approach to interpreting model predictions, Advances in neural information processing systems, 30.
- Mahmoodzadeh, A., Mohammadi, M., Ibrahim, H.H., Abdulhamid, S.N., Ali, H.F.H., Hasan, A.M., Khishe, M., and Mahmud, H., 2021, Machine learning forecasting models of disc cutters life of tunnel boring machine, Automation in Construction, 128, 103779.
- Rostami, J. and Ozdemir, L., 1993, A new model for performance prediction of hard rock TBMs. In: Proceedings of the rapid excavation and tunneling conference.
- Su, W., Li, X., Jin, D., Yang, Y., Qin, R., and Wang, X., 2020, Analysis and prediction of TBM disc cutter wear when tunneling in hard rock strata: a case study of a metro tunnel excavation in Shenzhen, China, Wear, 446, 203190.
- Wang, L., Li, H., Zhao, X., and Zhang, Q., 2017, Development of a prediction model for the wear evolution of disc cutters on rock TBM cutterhead, Tunnelling and Underground Space Technology, 67, 147-157. https://doi.org/10.1016/j.tust.2017.05.003
- Xu, D., Wang, Y., Huang, J., Liu, S., Xu, S., and Zhou, K., 2023, Prediction of geology condition for slurry pressure balanced shield tunnel with super-large diameter by machine learning algorithms, Tunnelling and Underground Space Technology, 131, 104852.
- Yu, H., Tao, J., Qin, C., Xiao, D., Sun, H., and Liu, C., 2021, Rock mass type prediction for tunnel boring machine using a novel semi-supervised method, Measurement, 179, 109545.