DOI QR코드

DOI QR Code

Advanced electromagnetic wave-based method for characterizing defects in cement-based structures using time domain reflectometry

  • Dongsoo Lee (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Jong-Sub Lee (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Young K. Ju (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Yong-Hoon Byun (Department of Agricultural Civil Engineering, Kyungpook National University)
  • Received : 2024.01.14
  • Accepted : 2024.03.18
  • Published : 2024.05.25

Abstract

This study presents novel electromagnetic wave-based methods for evaluating the integrity of cement-based structures using time domain reflectometry (TDR). Two cement-based plates with embedded rebars are prepared under sound and defective conditions. TDR tests are carried out using transmission lines with various numbers of artificial joints, and electromagnetic waves are measured to assess the integrity of the plates. The experimental results show that the travel time of electromagnetic waves is consistently longer in sound plates than in defective ones, and an increase in the reflection coefficients is observed in the defect zone of the defective plates. Electromagnetic wave velocities are higher in the defective plates, especially when connectors are present in the transmission line. A novel approach based on the area of the reflection coefficient provides larger areas in the defective plates, and the attenuation effect of the electromagnetic waves induces a difference in the areas of the reflection coefficient between the two defect conditions. An alternative method using the centroid of the defect zone slightly overestimates the location of the defect zone. The length of the defect zone is estimated using the defect ratio and wave velocities of cement, air, and plate. The length of the defect zone can also be calculated using the travel times within the plate, total measured length of the plate, and wave velocities in the cement and air. Therefore, the electromagnetic wave-based methods proposed in this study may be useful for estimating the location and length of defect zones by considering attenuation effects.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2021R1A5A132433 and No. RS2023-00208727).

References

  1. Barrow, W. (1936), "Transmission of electromagnetic waves in hollow tubes of metal", Proc. Inst. Radio Eng., 24(10), 1298-1328. https://doi.org/10.1109/JRPROC.1936.227357.
  2. Brown, D.A., Turner, J.P., Castelli, R.J. and Americas, P. (2010), "Drilled shafts: Construction procedures and LRFD design methods", FHWA-NHI-10-016; Federal Highway Administration, Washington, D.C., USA.
  3. Byun, Y.H., Han, W., Tutumluer, E. and Lee, J.S. (2016), "Elastic wave characterization of controlled low-strength material using embedded piezoelectric transducers", Constr. Build. Mater., 127, 210-219. https://doi.org/10.1016/j.conbuildmat.2016.09.113.
  4. Byun, Y.H., Seo, M.J., Han, W., Kim, S.Y. and Lee, J.S. (2023), "Strength and stiffness characteristics of cement paste-slime mixtures for embedded pile", Comput. Concrete, 31(4), 359-370. https://doi.org/10.12989/cac.2023.31.4.359.
  5. Dalton, F., Herkelrath, W., Rawlins, D. and Rhoades, J. (1984), "Time-domain reflectometry: Simultaneous measurement of soil water content and electrical conductivity with a single probe", Sci., 224(4652), 989-990. https://doi.org/10.1126/science.224.4652.989.
  6. Han, W., Lee, J.S. and Byun, Y.H. (2021), "Volume, strength, and stiffness characteristics of expandable foam grout", Constr. Build. Mater., 274, 122013. https://doi.org/10.1016/j.conbuildmat.2020.122013.
  7. Heimovaara, T. (1994), "Frequency domain analysis of time domain reflectometry waveforms: 1. Measurement of the complex dielectric permittivity of soils", Water Resour. Res., 30(2), 189-199. https://doi.org/10.1029/93WR02948.
  8. Ji, Y., Kim, B. and Kim, K. (2021), "Evaluation of liquefaction potentials based on shear wave velocities in Pohang City, South Korea", Int. J. Geo-Eng., 12, 1-10. https://doi.org/10.1186/s40703-020-00132-1.
  9. Kim, S.C., Kim, D.J. and Byun, Y.H. (2021), "Effect of fly ash on strength and stiffness characteristics of controlled low-strength material in shear wave monitoring", Mater., 14(11), 3022. https://doi.org/10.3390/ma14113022.
  10. Kong, S.M., Oh, D.W., Lee, S.Y., Jung, H.S. and Lee, Y.J. (2021), "Analysis of reinforced retaining wall failure based on reinforcement length", Int. J. Geo-Eng., 12, 1-14. https://doi.org/10.1186/s40703-021-00143-6.
  11. Kwak, K., Park, D., Chung, W.K. and Kim, J. (2016), "Underwater 3-D spatial attenuation characteristics of electromagnetic waves with omnidirectional antenna", IEEE/ASME Trans. Mechatron., 21(3), 1409-1419. https://doi.org/10.1109/TMECH.2015.2509466.
  12. Lee, D., Kim, D.J., Lee, J.S., Tutumluer, E. and Byun, Y.H. (2024), "Evaluation of dielectric and electrical properties of cement paste-slime mixture using time domain reflectometry", Constr. Build. Mater., (submitted).
  13. Lee, D., Yu, J.D., Jeong, S., Park, G. and Lee, J.S. (2024), "Nondestructive method for evaluating local integrity of model piles using electromagnetic waves", NDT E Int., 141, 102999. https://doi.org/10.1016/j.ndteint.2023.102999.
  14. Lee, J.S., Lee, D., Kim, Y., Zi, G. and Yu, J.D. (2023), "Smart monitoring system using electromagnetic waves to evaluate the integrity of reinforced concrete structural elements", Comput. Concrete, 31(4), 293. https://doi.org/10.12989/cac.2023.31.4.293.
  15. Lee, J.S., Song, J.U., Hong, W.T. and Yu, J.D. (2018), "Application of time domain reflectometer for detecting necking defects in bored piles", NDT E Int., 100, 132-141. https://doi.org/10.1016/j.ndteint.2018.09.006.
  16. Morgenthaler, F.R. (1958), "Velocity modulation of electromagnetic waves", IEEE Trans. Microw. Theory Tech., 6(2), 167-172. https://doi.org/10.1109/TMTT.1958.1124533.
  17. Narayanan, R. (1988), Steel-Concrete Composite Structures, CRC Press, Boca Raton, FL, USA.
  18. Perumalsamy, K. and Ranganathan, S. (2022), "Single pile in cohesionless soil in sloping ground under lateral loading", Int. J. Geo-Eng., 13(1), 8. https://doi.org/10.1186/s40703-022-00173-8.
  19. Su, M.B. and Chen, Y.J. (2000), "TDR monitoring for integrity of structural systems", J. Infrastr. Syst., 6(2), 67-72. https://doi.org/10.1061/(ASCE)1076-0342(2000)6:2(67).
  20. Thiyyakkandi, S., McVay, M., Bloomquist, D. and Lai, P. (2013), "Measured and predicted response of a new jetted and grouted precast pile with membranes in cohesionless soils", J. Geotech. Geoenviron. Eng., 139(8), 1334-1345. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000860.
  21. White, D., Finlay, T., Bolton, M. and Bearss, G. (2002), "Press-in piling: Ground vibration and noise during pile installation", Deep Foundations 2002: An International Perspective on Theory, Design, Construction, and Performance, Orlando, FL, USA, February.
  22. Yu, J.D. and Lee, J.S. (2020), "Smart sensing using electromagnetic waves for inspection of defects in rock bolts", Sensors, 20(10), 2821. https://doi.org/10.3390/s20102821.
  23. Yu, J.D., Bae, M.H., Lee, I.M. and Lee, J.S. (2013), "Nongrouted ratio evaluation of rock bolts by reflection of guided ultrasonic waves", J. Geotech. Geoenviron. Eng., 139(2), 298-307. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000767.
  24. Yu, J.D., Byun, Y.H. and Lee, J.S. (2019), "Experimental and numerical studies on group velocity of ultrasonic guided waves in rock bolts with different grouted ratios", Comput. Geotech., 114, 103130. https://doi.org/10.1016/j.compgeo.2019.103130.
  25. Yu, J.D., Kim, K.H. and Lee, J.S. (2018), "Nondestructive health monitoring of soil nails using electromagnetic waves", Can. Geotech. J., 55(1), 79-89. https://doi.org/10.1139/cgj-2017-0043.
  26. Yu, J.D., Kim, S.Y. and Lee, J.S. (2020), "Variations in velocity and sensitivity of electromagnetic waves in transmission lines configured in model piles with necking defects containing soils", Sensors, 20(22), 6541. https://doi.org/10.3390/s20226541.
  27. Zima, B. and Kedra, R. (2021), "Baseline-free debonding detection in reinforced concrete structures by elastic wave propagation", Measure., 172, 108907. https://doi.org/10.1016/j.measurement.2020.108907.