DOI QR코드

DOI QR Code

A review of transient storage modeling for analyzing one-dimensional non-fickian solute transport in rivers

1차원 Non-Fickian 하천혼합 해석을 위한 하천 저장대 모델링 연구 동향

  • Kim, Byunguk (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Seo, Il Won (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Kim, Jun Song (Department of Civil and Environmental Engineering, Hankyong National University) ;
  • Noh, Hyoseob (Institute of Construction and Environmental Engineering, Seoul National University)
  • 김병욱 (서울대학교 건설환경공학부) ;
  • 서일원 (서울대학교 건설환경공학부) ;
  • 김준성 (한경대학교 건설환경공학부) ;
  • 노효섭 (서울대학교 건설환경종합연구소)
  • Received : 2024.02.08
  • Accepted : 2024.03.27
  • Published : 2024.04.30

Abstract

Since the first introduction of one-dimensional transient storage modeling in the field of solute transport analysis in rivers, its application has notably expanded for various purposes, including for hydrology and geobiology over the past few decades. Despite strides in refining transient storage models, there remain unresolved challenges in simplifying complex river transport dynamics into concise formulas and a limited set of parameters. This review paper is dedicated to cataloging and assessing existing transient storage models, outlining the difficulties associated with model structures, parameters, and data, and suggesting directions for future research. We seek to enhance understanding of transient storage by highlighting the importance of continuously evaluating residence time distribution modeling, integrating hydrodynamic models, and using data with minimal assumptions. This paper would contribute to advance our comprehension of the transient storage process, offering insights into sophisticated modeling techniques, pinpointing uncertainty in parameters, and suggesting the necessary avenues for further study.

지형구조가 복잡한 자연하천에서의 오염물질의 혼합과 이송 현상을 해석하기 위해 개발된 1차원 저장대 모형은 1970년대에 처음으로 제시된 이후 하천 내 오염물질의 정체 현상의 정확한 분석을 목적으로 다양한 형태로 개선되어 왔으며, 지난 수년간 지표수 및 지하수 분야에서 오염물질의 거동 및 체류시간을 예측하는 도구로써 활발히 활용되어 왔다. 그럼에도 불구하고 1차원 저장대 모형은 복잡한 자연하천의 혼합 기작을 제한된 매개변수를 통해 단순화하기 때문에 아직 해결되지 않은 숙제가 남아 있다. 본 리뷰 논문에서는 현재까지 개발된 저장대 모형의 장·단점을 설명하고, 모형의 구조적, 비구조적 불확실성에 대한 문제를 제기하고, 이를 극복하기 위해 필요한 연구의 방향성을 제시하였다. 본 연구 결과, 지속적인 정체시간분포 모델링에 대한 개선, 동수역학 해석 모형과 저장대 모형과의 결합, 그리고 추적자 실험 자료 수집 과정에서 불확도 개선을 통해 저장대 모형의 정확도를 향상시킬 수 있음을 알 수 있다. 모형의 복잡성을 증가시켜 정확도를 강화하는 방안은 지양하여야 하며, 모형 매개변수를 통한 하천의 정체특성 해석에는 수리·지형학적 근거와 추적자 실험 자료와 매개변수 추정 방식의 신뢰성이 함께 제시되어야 한다. 본 연구의 분석 결과와 제언은 저장대 모형을 통한 정밀한 하천 혼합 해석의 향후 연구에 토대가 될 것으로 기대한다.

Keywords

Acknowledgement

본 연구는 환경부 국토교통과학기술진흥원의 지원(22DPIW-C153746-04)과, 환경부 미세플라스틱 측정 및 위해성평가 기술개발사업(2021003110003)의 연구비 지원에 의하여 연구되었으며 이에 감사드립니다. 또한, 서울대학교 건설환경종합연구소의 지원에도 감사드립니다.

References

  1. ASCE Task Committee on Hydraulic Engineering Advocacy (1996). "Environmental hydraulics: New research directions for the 21st century." Journal of Hydraulic Engineering, ASCE, Vol. 122, No. 4, pp. 180-183. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:4(180)
  2. Bencala, K.E. (1983). "Simulation of solute transport in a mountain pool-and-riffle stream with a kinetic mass transfer model for sorption." Water Resources Research, Vol. 19, No. 3, pp. 732-738. doi: 10.1029/WR019i003p00732
  3. Bencala, K.E., and Walters, R.A. (1983). "Simulation of solute transport in a mountain pool-and-riffle stream: A transient storage model." Water Resources Research, Vol. 19, No. 3, pp. 718-724. doi: 10.1029/WR019i003p00718
  4. Boano, F., Harvey, J.W., Marion, A., Packman, A.I., Revelli, R., Ridolfi, L., and Worman, A. (2014). "Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications." Eos, Transactions American Geophysical Union, Vol. 52, pp. 603-679. doi: 10.1029/88EO01108
  5. Boano, F., Packman, A.I., Cortis, A., Revelli, R., and Ridolfi, L. (2007). "A continuous time random walk approach to the stream transport of solutes." Water Resources Research, Vol. 43, No. 10, pp. 1-12. doi: 10.1029/2007WR006062
  6. Bottacin-Busolin, A., Dallan, E., and Marion, A. (2021). "STIR-RST: A Software tool for reactive smart tracer studies." Environmental Modelling and Software, Vol. 135, 104894. doi: 10.1016/j.envsoft.2020.104894
  7. Briggs, M.A., Gooseff, M.N., Arp, C.D., and Baker, M.A. (2009). "A method for estimating surface transient storage parameters for streams with concurrent hyporheic storage." Water Resources Research, Vol. 46, No. 4, pp. 1-13. doi: 10.1029/2008WR006959
  8. Cheong, T.S., and Seo, I.W. (2003). "Parameter estimation of the transient storage model by a routing method for river mixing processes." Water Resources Research, Vol. 39, No. 4, 1074. doi: 10.1029/2001WR000676
  9. Cheong, T.S., Younis, B.A., and Seo, I.W. (2007). "Estimation of key parameters in model for solute transport in rivers and streams." Water Resources Management, Vol. 21, No. 7, pp. 1165-1186. doi: 10.1007/s11269-006-9074-7
  10. Choi, J., Harvey, J.W., and Conklin, M.H. (2000a). "Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams." Water Resources Research, Vol. 36, No. 6, pp. 1511-1518. https://doi.org/10.1029/2000WR900051
  11. Choi, J., Harvey, J.W., and Conklin, M.H. (2000b). "Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams." Water Resources Research, Vol. 36, No. 6, pp. 1511-1518. doi: 10.1029/2000WR900051
  12. Choi, S.Y., Seo, I.W., and Kim, Y.O. (2020). "Parameter uncertainty estimation of transient storage model using Bayesian inference with formal likelihood based on breakthrough curve segmentation." Environmental Modelling and Software, Vol. 123, 104558. doi: 10.1016/j.envsoft.2019.104558
  13. Deng, Z.-Q., Bengtsson, L., Singh, V.P., and Adrian, D.D. (2002). "Longitudinal dispersion coefficient in single-channel streams." Journal of Hydraulic Engineering, Vol. 128, No. 10, pp. 901-916. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:10(901)
  14. Deng, Z.-Q., Singh, V.P., and Bengtsson, L. (2004). "Numerical solution of fractional order advection-reaction-diffusion equation." Journal of Hydraulic Engineering, Vol. 130, No. 5, pp. 422-431. doi: 10.2298/TSCI170624034D
  15. Duchon, C.E. (1979). "Lanczos filtering in one and two dimensions." Journal of Applied Methorology, Vol. 18, No. 8, pp. 1016-1022. https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2
  16. Ehteram, M., Sharafati, A., Asadollah, S.B.H.S., and Neshat, A. (2021). "Estimating the transient storage parameters for pollution modeling in small streams: A comparison of newly developed hybrid optimization algorithms." Environmental Monitoring and Assessment, Vol. 193, No. 8, 475. doi: 10.1007/s10661-021-09269-7
  17. Elder, J. (1959). "The dispersion of marked fluid in turbulent shear flow." Journal of Fluid Mechanics, Vol. 5, No. 4, pp. 544-560. doi: 10.1017/S0022112059000374.
  18. Elliott, H., and Brooks, N.H. (1997). "Transfer of nonsorbing solutes to a streambed with bed forms: Theory." Vol. 33, No. 1, pp. 123-136. https://doi.org/10.1029/96WR02784
  19. Femeena, P.V., Chaubey, I., Aubeneau, A., McMillan, S., Wagner, P.D., and Fohrer, N. (2019). "Simple regression models can act as calibration-substitute to approximate transient storage parameters in streams." Advances in Water Resources, Vol. 123, pp. 201-209. doi: 10.1016/j.advwatres.2018.11.010
  20. Fischer, H.B. (1979). Mixing in inland and coastal waters. Academic Press, Cambridge, MA, U.S.
  21. Gooseff, M.N., Benson, D.A., Briggs, M.A., Weaver, M., Wollheim, W., Peterson, B., and Hopkinson, C.S. (2011). "Residence time distributions in surface transient storage zones in streams: Estimation via signal deconvolution." Water Resources Research, Vol. 47, No. 5, pp. 1-7. doi: 10.1029/2010WR009959
  22. Gooseff, M.N., Briggs, M.A., Bencala, K.E., McGlynn, B.L., and Scott, D.T. (2013). "Do transient storage parameters directly scale in longer, combined stream reaches? Reach length dependence of transient storage interpretations." Journal of Hydrology, Vol. 483, pp. 16-25. doi: 10.1016/j.jhydrol.2012.12.046
  23. Gooseff, M.N., LaNier, J., Haggerty, R., and Kokkeler, K. (2005). "Determining in-channel (dead zone) transient storage by comparing solute transport in a bedrock channel-alluvial channel sequence, Oregon." Water Resources Research, Vol. 41, No. 6, pp. 1-7. doi: 10.1029/2004WR003513
  24. Guymer, I., and Stovin, V.R. (2011). "One-dimensional mixing model for surcharged manholes." Journal of Hydraulic Engineering, Vol. 137, No. 10, pp. 1160-1172. doi: 10.1061/(asce)hy.1943-7900.0000422
  25. Haggerty, R., Marti, E., Argerich, A., Von Schiller, D., and Grimm, N.B. (2009). "Resazurin as a "smart" tracer for quantifying metabolically active transient storage in stream ecosystems." Journal of Geophysical Research - Biogeosciences, Vol. 114, No. G3, G03014. doi: 10.1029/2008JG000942
  26. Haggerty, R., McKenna, S.A., and Meigs, L.C. (2000). "On the late-time behavior of tracer test breakthrough curves." Water Resources Research, Vol. 36, No. 12, pp. 3467-3479. doi: 10.1029/2000WR900214
  27. Hart, D.R. (1995). "Parameter estimation and stochastic interpretation of the transient storage model for solute transport in streams." Water Resources Research, Vol. 31, No. 2, pp. 323-328. doi: 10.1029/94WR02739
  28. Harvey, J.W., Wagner, B.J., and Bencala, K.E. (1996). "Evaluating the reliability of the stream tracer approach to characterize stream-subsurface water exchange." Water Resources Research, Vol. 32, No. 8, pp. 2441-2451. doi: 10.1029/96WR01268
  29. Jackson, T.R., Haggerty, R., Apte, S.V., Coleman, A., and Drost, K.J. (2012). "Defining and measuring the mean residence time of lateral surface transient storage zones in small streams." Water Resources Research, Vol. 48, No. 10, pp. 1-20. doi: 10.1029/2012WR012096
  30. Jung, S.H., and Seo, I.W. (2021). "Investigation of effects of weir on the pollutant mixing in rivers." In Proceedings of the Korea Water Resources Association Conference, KWRA, pp. 20-20.
  31. Kelleher, C., Ward, A., Knapp, J.L., Blaen, P.J., Kurz, M.J., and Drummond, J.D. (2019). "Exploring tracer information and model framework trade-offs to improve estimation of stream transient storage processes." Water Resources Research, Vol. 55, No. 4, pp. 3481-3501. doi: 10.1029/2018WR023585
  32. Kim, B., Kwon, S., and Seo, I.W. (2023a). "An explicit solution for characterizing non-Fickian solute transport in natural streams." Water, Vol. 15, No. 9, 1702. doi: 10.3390/w15091702
  33. Kim, B., Kwon, S., Noh, H., and Seo, I.W. (2022). "Surrogate prediction of the breakthrough curve of solute transport in rivers using its reach length dependence." Journal of Contaminant Hydrology, Vol. 249, 104024. doi: 10.1016/j.jconhyd.2022.104024
  34. Kim, B., Seo, I.W., Kwon, S., and Baek, D. (2023b). "Estimating net retention time of solute in storage zones of a stream." Water Resources Research, Vol. 59, No. 5, e2022WR032243. doi: 10.1029/2022WR032243
  35. Kim, B., Seo, I.W., Kwon, S., Jung, S.H., and Choi, Y. (2021a). "Modelling one-dimensional reactive transport of toxic contaminants in natural rivers." Environmental Modelling and Software, Vol. 137, 104971. doi: 10.1016/j.envsoft.2021.104971
  36. Kim, B., Seo, I.W., Kwon, S., Jung, S.H., and Yun, S.H. (2021b). "Analysis of solute transport in rivers using a stochastic storage model." Journal of Korea Water Resources Association, Vol. 54, No. 5, pp. 335-345. doi: 10.3741/JKWRA.2021.54.5.335
  37. Kim, J.S. (2022). "Numerical analysis of the hyporheic flow effect on solute transport in surface water." Journal of Korea Water Resources Association, Vol. 55, No. 1, pp. 23-32. doi: 10.3741/JKWRA.2022.55.1.23
  38. Kim, J.S., Kang, P.K., He, S., Shen, L., Kumar, S.S., Hong, J., and Seo, I.W. (2023c). "Pore-scale flow effects on solute transport in turbulent channel flows over porous media." Transport in Porous Media, Vol. 146, No. 1-2, pp. 223-248. doi: 10.1007/s11242-021-01736-6
  39. Kim, J.S., Seo, I.W., Baek, D., and Kang, P.K. (2020). "Recirculating flow-induced anomalous transport in meandering open-channel flows." Advances in Water Resources, Vol. 141, 103603. doi: 10.1016/j.advwatres.2020.103603
  40. Kim, J.S., Seo, I.W., Shin, J., Jung, S.H., and Yun, S.H. (2021c). "Modeling 2D residence time distributions of pollutants in natural rivers using RAMS+." Journal of Korea Water Resources Association, Vol. 54, No. 7, pp. 495-507. doi: 10.3741/JKWRA.2021.54.7.495
  41. Knapp, J.L., and Cirpka, O.A. (2017). "Determination of hyporheic travel time distributions and other parameters from concurrent conser- vative and reactive tracer tests by local-in-global optimization." Water Resources Research, Vol. 53, No. 6, pp. 4984-5001. doi: 10.1002/ 2017WR020734
  42. Knapp, J.L., Gonzalez-Pinzon, R., and Haggerty, R. (2018). "The resazurin-resorufin system: Insights from a decade of "smart" tracer development for hydrologic applications." Water Resources Research, Vol. 54, No. 9, pp. 6877-6889. doi: 10.1029/2018WR023103
  43. Knapp, J.L.A., and Kelleher, C. (2020). "A perspective on the future of transient storage modeling: Let's stop chasing our tails." Water Resources Research, Vol. 56, No. 3, pp. 1-7. doi: 10.1029/2019WR026257
  44. Knapp, J.L.A., Gonzalez-Pinzon, R., Drummond, J.D., Larsen, L.G., Cirpka, O.A., and Harvey, J.W. (2017). "Tracer-based characterization of hyporheic exchange and benthic biolayers in streams." Water Resources Research Research, Vol. 53, pp. 1575-1594. https://doi.org/10.1002/2016WR019393
  45. Krishnan, D., and Fergus, R. (2009). "Fast image deconvolution using hyper-laplacian priors." Advances in Neural Information Processing Systems 22 - Proceedings of the 2009 Conference, Vancouver, British Columbia, Canada, pp. 1033-1041.
  46. Kundur, D., Hatzinakos, D.K., and Hatzinakos, D. (1996). "Blind image deconvolution." IEEE Signal Processing Magazine, Vol. 13, No. 3, pp. 43-64. https://doi.org/10.1109/79.489268
  47. Kwon, S., Noh, H., Seo, I.W., Jung, S.H., and Baek, D. (2021). "Identification framework of contaminant spill in rivers using machine learning with breakthrough curve analysis." International Journal of Environmental Research and Public Health, Vol. 18, No. 3, pp. 1-28. doi: 10.3390/ijerph18031023
  48. Liao, Z., Lemke, D., Osenbruck, K., and Cirpka, O.A. (2013). "Modeling and inverting reactive stream tracers undergoing two-site sorption and decay in the hyporheic zone." Water Resources Research, Vol. 49, No. 6, pp. 3406-3422. doi: 10.1002/wrcr.20276
  49. Madadi, M.R., Akbarifard, S., and Qaderi, K. (2020). "Improved Moth-Swarm Algorithm to predict transient storage model parameters in natural streams." Environmental Pollution, Vol. 262, 114258. doi: 10.1016/j.envpol.2020.114258
  50. Marion, A., and Zaramella, M. (2005). "A residence time model for stream-subsurface exchange of contaminants." Acta Geophysica Polonica, Vol. 53, No. 4, pp. 527-538.
  51. Marion, A., Zaramella, M., and Bottacin-Busolin, A. (2008). "Solute transport in rivers with multiple storage zones: The STIR model." Water Resources Research, Vol. 44, No. 10, pp. 1-10. doi: 10.1029/2008WR007037
  52. Mignot, E., Cai, W., Polanco, J.I., Escauriaza, C., and Riviere, N. (2017). "Measurement of mass exchange processes and coefficients in a simplified open-channel lateral cavity connected to a main stream." Environmental Fluid Mechanics, Vol. 17, No. 3, pp. 429-448. doi: 10.1007/s10652-016-9495-7
  53. Neilson, B.T., Stevens, D.K., Chapra, S.C., and Bandaragoda, C. (2010). "Two-zone transient storage modeling using temperature and solute data with multiobjective calibration: 2. Temperature and solute.: Water Resources Research, Vol. 46, No. 12, W12521. doi: 10.1029/2009WR008759
  54. Noh, H., Baek, D., and Seo, I.W. (2019). "Analysis of the applicability of parameter estimation methods for a transient storage model." Journal of Korea Water Resources Association, Vol. 52, No. 10, pp. 681-695. doi: 10.3741/JKWRA.2019.52.10.681
  55. Noh, H., Kwon, S., Seo, I.W., Baek, D., and Jung, S.H. (2021). "Multi-gene genetic programming regression model for prediction of transient storage model parameters in natural rivers." Water (Switzerland), Vol. 13, No. 1, 76. doi: 10.3390/w13010076
  56. Park, I., and Seo, I.W. (2018). "Modeling non-Fickian pollutant mixing in open channel flows using two-dimensional particle dispersion model." Advances in Water Resources, Vol. 111, pp. 105-120. doi: 10.1016/j.advwatres.2017.10.035
  57. Park, I., Seo, I.W., Shin, J., and Song, C.G. (2020). "Experimental and numerical investigations of spatially-varying dispersion tensors based on vertical velocity profile and depth-averaged flow field." Advances in Water Resources, Vol. 142, 103606. doi: 10.1016/j.advwatres.2020.103606
  58. Payn, R.A., Gooseff, M.N., Benson, D.A., Cirpka, O.A., Zarnetske, J.P., Bowden, W.B., McNamara, J.P., and Bradford, J.H. (2008). "Comparison of instantaneous and constant-rate stream tracer experiments through non-parametric analysis of residence time distributions." Water Resources Research, Vol. 44, No. 6, pp. 1-10. doi: 10.1029/2007WR006274
  59. Rowinski, P.M., and Piotrowski, A. (2008). "Estimation of parameters of the transient storage model by means of multi-layer perceptron neural networks." Hydrological Sciences Journal, Vol. 53, No. 1, pp. 165-178. doi: 10.1623/hysj.53.1.165
  60. Rowinski, P.M., Piotrowski, A., and Napiorkowski, J.J. (2005). "Are artificial neural network techniques relevant for the estimation of longitudinal dispersion coefficient in rivers?" Hydrological Sciences Journal, Vol. 50, No. 1, pp. 175-187. doi: 10.1623/hysj.50.1.175.56339
  61. Runkel, R.L. (1998). One-dimensional transport with inflow and storage (OTIS): A solute transport model for streams and rivers. US Department of the Interior, US Geological Survey. Vol. 98, No. 4018, District of Columbia, U.S. doi: 10.3133/wri984018
  62. Runkel, R.L. (2015). "On the use of rhodamine WT for the characterization of stream hydrodynamics and transient storage." Water Resources Research, Vol. 51, pp. 6125-6142. doi: 10.1111/j.1752-1688.1969.tb04897.x
  63. Runkel, R.L., and Broshears, R.E. (1991). One-dimensional transport with inflow and storage (OTIS): A solute transport model for small streams. Center for Advanced Decision Support for Water and Environmental Systems (CADSWES), Department of Civil Engineering, University of Colorado, Boulder, CO, U.S.
  64. Sahay, R.R. (2012). "Predicting transient storage model parameters of rivers by genetic algorithm." Water Resources Management, Vol. 26, No. 13, pp. 3667-3685. doi: 10.1007/s11269-012-0092-3
  65. Sandoval, J., Mignot, E., Mao, L., Pasten, P., Bolster, D., and Escauriaza, C. (2019). "Field and numerical investigation of transport mechanisms in a surface storage zone." Journal of Geophysical Research: Earth Surface, Vol. 124, No. 4, pp. 938-959. doi: 10.1029/2018JF004716
  66. Schmid, B.H. (1995). "Temporal moments accounting for the effects of first-order decay: Sur les equations de stockage du transport longitudinal de solute dans des canaux a surface libre: Moments temporels tenant compte des effets de decroissance du premiere ordre." Journal of Hydraulic Research, Vol. 33, No. 5, pp. 595-610. doi: 10.1080/00221689509498559
  67. Seo, I.W., and Cheong, T.S. (2001). "Moment-based calculation of parameters for the storage zone model for river dispersion." Journal of Hydraulic Engineering, Vol. 127, No. 6, pp. 453-465. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:6(453)
  68. Seo, I.W., and Yu, D. (2000). "Characterization of pool-riffle sequences in solute transport modeling of streams." Water Engineering Research, Vol. 1, No. 3, pp. 171-185.
  69. Shin, J., Lee, S., and Park, I. (2021a). "Analysis of storage effects in the recirculation zone based on the junction angle of channel confluence." Applied Sciences (Switzerland), Vol. 11, No. 24. doi: 10.3390/app112411607
  70. Shin, J., Lee, S., and Park, I. (2023). "Influences of momentum ratio on transverse dispersion for intermediate-field mixing downstream of channel confluence." International Journal of Environmental Research and Public Health, Vol. 20, No. 4, 2776. doi: 10.3390/ijerph20042776
  71. Shin, J., Rhee, D., and Park, I. (2021b). "Applications of two-dimensional spatial routing procedure for estimating dispersion coefficients in open channel flows." Water (Switzerland), Vol. 13, No. 10, pp. 1-21. doi: 10.3390/w13101394
  72. Sonnenwald, F., Stovin, V., and Guymer, I. (2014). "Configuring maximum entropy deconvolution for the identification of residence time distributions in solute transport applications." Journal of Hydrologic Engineering, Vol. 19, No. 7, pp. 1413-1421. doi: 10.1061/(asce)he.1943-5584.0000929
  73. Thackston, E.L., and Schnelle, K.B. (1970). "Predicting effects of dead zones on stream mixing." Journal of the Sanitary Engineering Division, Vol. 96, No. 2, pp. 319-331. https://doi.org/10.1061/JSEDAI.0001078
  74. Tsai, C.H., Rucker, D.F., Brooks, S.C., Ginn, T., and Carroll, K.C. (2022). "Transient storage model parameter optimization using the simulated annealing method." Water Resources Research, Vol. 58, No. 7, e2022WR032018. doi: 10.1029/2022WR032018
  75. Wagner, B.J., and Harvey, J.W. (1997). "Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies." Water Resources Research, Vol. 33, No. 7, pp. 1731-1741. https://doi.org/10.1029/97WR01067
  76. Ward, A.S., Kelleher, C.A., Mason, S.J.K., Wagener, T., McIntyre, N., McGlynn, B., Runkel, R.L., and Payn, R.A. (2017). "A software tool to assess uncertainty in transient-storage model parameters using Monte Carlo simulations." Freshwater Science, Vol. 36, No. 1, pp. 195-217. doi: 10.1086/690444
  77. Weitbrecht, V., Socolofsky, S.A., and Jirka, G.H. (2008). "Experiments on mass exchange between groin fields and main stream in rivers volker." Journal of Hydraulic Engineering, Vol. 134, No. 2, pp. 173-183. doi: 10.1061/(ASCE)0733-9429(2008)134
  78. Worman, A., and Wachniew, P. (2007). "Reach scale and evaluation methods as limitations for transient storage properties in streams and rivers." Water Resources Research, Vol. 43, No. 10, pp. 1-13. doi: 10.1029/2006WR005808
  79. Worman, A., Packman, A.I., Johansson, H., and Jonsson, K. (2002). "Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers." Water Resources Research, Vol. 38, No. 1, pp. 2-1-2-15. doi: 10.1029/2001wr000769
  80. Yeh, T.C., Khaleel, R., and Carroll, K.C. (2015). Flow through heterogeneous geologic media. Cambridge University Press, Cambridge, UK.
  81. Zaramella, M., Marion, A., Lewandowski, J., and Nutzmann, G. (2016). "Assessment of transient storage exchange and advection-dispersion mechanisms from concentration signatures along breakthrough curves." Journal of Hydrology, Vol. 538, pp. 794-801. doi: 10.1016/j.jhydrol.2016.05.004
  82. Zarnetske, J.P., Gooseff, M.N., Brosten, T.R., Bradford, J.H., McNamara, J.P., and Bowden, W.B. (2007). "Transient storage as a function of geomorphology, discharge, and permafrost active layer conditions in Arctic tundra streams." Water Resources Research, Vol. 43, No. 7, pp. 1-13. doi: 10.1029/2005WR004816