DOI QR코드

DOI QR Code

터널 시공현장 붕괴 사례를 이용한 막장의 안정성 평가 연구

Stability Assessment of Tunnel Excavation Face Utilizing Characteristics of Collapse Cases

  • 김민태 (고려대학교 건축사회환경공학부)
  • Kim, Mintae (Sch. of Civil, Environmental and Architectural Engrg., Korea Univ.)
  • 투고 : 2024.02.08
  • 심사 : 2024.03.05
  • 발행 : 2024.04.30

초록

쉴드공법은 국제적인 사례에서 그 안정성을 입증한 반면, 경제적 효율성을 지닌 것으로 알려진 NATM 터널 굴착공법은 피복이 얕고 지반이 풍화되며 지하수가 많은 도심지에 적용 시 어려움을 겪고 있다. 본 논문에서는 도심지의 풍화된 암반층과 미고결 사질토 지반에서 발생할 수 있는 전형적인 두 가지 붕락 사례를 소개하고, 여섯 가지 안정성 평가 방법으로 두 붕락 사례를 분석하였으며, 그 결과를 종합하여 육각형의 다이어그램에 의한 방법으로 터널의 막장 안정성을 평가하였다. 본 연구의 분석 결과, 붕괴한 두 터널 현장의 결과와 평가 결과가 잘 일치하였으며, 대상터널의 지반 특성을 고려한 종합적인 평가 방법인 막장 안정성 평가 다이어그램에 의한 방법은 터널 설계 단계에서 터널의 막장 안정성을 확보하는 데 중요한 역할을 할 것으로 판단된다.

While shield tunneling has demonstrated stability in international cases, the new Austrian tunneling method (NATM) encounters challenges in urban environments with shallow cover, weathered ground, and high groundwater levels. This paper introduces two typical collapse scenarios observed in urban areas, specifically within weathered bedrock and uncemented sandy soil layers. The collapses are analyzed using six stability evaluation methods, and the results are synthesized to assess the excavation face stability through a hexagonal diagram. The study finds a consistent agreement between the analysis results of the two collapsed tunnel sites and the evaluation outcomes. The employment of the stability evaluation diagram, a comprehensive method that considers the ground characteristics of the target tunnel, proves crucial for ensuring barrier stability during the tunnel design stage. This method is essential for a holistic evaluation, especially when addressing challenging ground conditions in urban settings.

키워드

참고문헌

  1. Broms, B.B. and Bennermark, H. (1967), "Stability of Clay at Vertical Opening", Journal of the Soil Mechanics and Foundations Division, Vol.93, No.11, pp.71-94. https://doi.org/10.1061/JSFEAQ.0000946
  2. Ghiasi, V. and Koushki, M. (2020), "Numerical and Artificial Neural Network Analyses of Ground Surface Settlement of Tunnel in Saturated Soil", SN Applied Sciences, Vol.2, No.5, pp.939.
  3. Hoek, E. (1998), "Tunnel Support in Weak Rock", In Keynote address, Symposium of Sedimentary Rock Engineering, Taipei, Taiwan, Vol.12.
  4. Hoek, E. (2001), "Big Tunnels in Bad Rock", Journal of Geotechnical and Geoenvironmental Engineering, Vol.127, No.9, pp.726-740. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(726)
  5. Jeong, H., Zhang, N., and Jeon, S. (2018), "Review of Technical Issues for Shield TBM Tunneling in Difficult Grounds", Journal of Tunnel and Underground Space Association, Vol.28, No.1, pp.1-24. (In Korean)
  6. Kim, Y., Jeong, W., Lee, S., and Seok, T. (2006), "The Prediction for Ground Movement of Urban NATM Tunnels Using the Strainsofting Model", Journal of Tunnel and Underground Space Association, Vol.8, No.1, pp.21-30. (In Korean)
  7. Kumar, A. and Chauhan, V.B. (2023), "Advanced Finite Element Limit Analysis and Machine Learning for Assessing the Stability of Square Tunnels in Rock Slope", Transportation Infrastructure Geotechnology, pp.1-35.
  8. Kwon, K., Choi, H., Oh, J., and Kim, D. (2022), "A Study on EPB Shield TBM Face Pressure Prediction Using Machine Learning Altorithms", Journal of Tunnel and Underground Space Association, Vol.24, No.2, pp.217-230. (In Korean)
  9. Kwon, K., Kang, M., Hwang, B., and Choi, H. (2023), "Study on Risk Priority for TBM Collapse based on Bayes Theorem through Case Study", KSCE Journal of Civil and Environmental Engineering Research, Vol.43, No.6, pp.785-791. (In Korean)
  10. MAFF (1975), "Land Improvement Project Measurement and Design Standards", Rural Development Bureau, Ministry of Agriculture, Forestry, and Fisheries. (In Japanese)
  11. Mashimo, H., Suzuki, M., and Inokuma, A. (1999), "Study on Evaluation Method of Tunnel Face Stability", In Proceedings of the Japan Society of Civil Engineers, Vol.1999, No.638, pp.117-129. https://doi.org/10.2208/jscej.1999.638_117
  12. Peck, B.B. (1969), "Deep Excavation and Tunnelling in Soft Ground, State of the Art Volume", In Proceedings of the 7th International Conference Soil Mechanics (ICSMFE), Vol.4, pp.225-290.
  13. Sakurai, S. (1982), "An Evaluation Technique of Displacement Measurements in Tunnels", In Proceedings of the Japan Society of Civil Engineers, Vol.1982, No.317, pp.93-100. (In Japanese) https://doi.org/10.2208/jscej1969.1982.93
  14. Sakurai, S. (1997), "Lessons Learned from Field Measurements in Tunnelling", Tunnelling and underground space technology, Vol.12, No.4, pp.453-460. (In Japanese) https://doi.org/10.1016/S0886-7798(98)00004-2
  15. Sakurai, S. (1998), Practice of urban tunnels. Kajima Publ. (In Japanese)
  16. Schofield, A.N. (1980), "Cambridge Geotechnical Centrifuge Operations", Geotechnique, Vol.30, No.3, pp.227-268. https://doi.org/10.1680/geot.1980.30.3.227
  17. Shin, H., Kwon, Y., Kim, D., Bae, G., Lee, H., and Shin, Y. (2009), "Quantitative Preliminary Hazard Level Simulation for Tunnel Design based on the KICT Tunnel Collapse Hazard Risk (KTH-index)", Journal of Korean Tunnelling and Underground Space Association, Vol.11, No.4, pp.373-385. (In Korean) https://doi.org/10.9711/KTAJ.2009.11.4.373
  18. Taromi, M., Eftekhari, A., Hamidi, J.K., and Aalianvari, A. (2017), "A Discrepancy between Observed and Predicted NATM Tunnel behaviors and Updating: A Case Study of the Sabzkuh Tunnel", Bulletin of Engineering Geology and the Environment, Vol.76, pp.713-729.
  19. Timoshenko, S.P. and Goodier, J.N. (1970), Theory of elasticity. McGraw-Hill New York.