DOI QR코드

DOI QR Code

Development of Sustainable Packaging Materials Using Coffee Silverskin and Spent Coffee Grounds: A Comprehensive Review

커피 은피와 커피찌꺼기를 활용한 지속가능한 포장소재 개발을 위한 연구동향

  • Jihyeon Hwang (Department of Marine Bio Food Science, College of Life Science, Gangneung-Wonju National University) ;
  • Dowan Kim (Department of Marine Bio Food Science, College of Life Science, Gangneung-Wonju National University)
  • 황지현 (국립강릉원주대학교, 생명과학대학, 해양바이오식품학과) ;
  • 김도완 (국립강릉원주대학교, 생명과학대학, 해양바이오식품학과)
  • Published : 2024.04.30

Abstract

As awareness of environmental issues continues to grow, there is an escalating demand for recycling and repurposing byproducts of agricultural and food production processes and their conversion to high-value products. Coffee is the most widely consumed beverage globally; during coffee beverage processing and consumption, byproducts such as coffee silverskin (CS), spent coffee grounds (SCGs), and oil are generated. Despite containing beneficial materials such as cellulose, hemicellulose, lignin, lipids, and bioactive substances, these byproducts are typically discarded in landfills or incinerated. The utilization of CS, SCGs, and oil in the development of packaging materials holds significant potentials toward the realization of a sustainable society. To this end, considerable research efforts have been dedicated to the development of high-value materials derived from coffee byproducts, including functional fillers, polymer composites, and biodegradable polymers. Notably, CS and SCGs have been employed as functional fillers in polymer composites. Additionally, lipids extracted from SCGs have been used as plasticizers for polymers and cultured with microorganisms to produce biodegradable polymers. This review focuses on the research and development of polymer/CS and polymer/SCG composites as well as cellulose extraction and utilization from CS and SCGs and its applications, oil extraction from SCGs, and cultivation with microorganisms using extracted oil for polyhydroxyalkanoates(PHA) production.

환경문제에 대한 관심이 증가함에 따라 지속가능한 소재에 대한 요구가 증가하고 있다. 전 세계적으로 커피는 가장 많이 소비되는 음료이며, 커피음료의 가공 및 소비로 발생하는 커피 부산물에는 셀룰로오스, 헤미셀룰로오스, 리그닌, 지질 및 생리활성물질 등이 풍부하지만 대부분 폐기되는 실정이다. 따라서, 많은 연구자들이 커피 부산물을 고부가가치 소재로 개발하기 위하여 노력하고 있다. 본 총설에서는 고분자/커피 은피 복합화 연구, 커피 은피로부터 셀룰로오스 추출 및 응용연구, 고분자/커피찌꺼기 복합화 연구, 커피찌꺼기로부터 셀룰로오스 추출 및 이를 활용한 연구, 커피찌꺼기로부터 지질 추출 및 이를 활용한 PHAs합성, 가소제로써 커피찌꺼기로부터 추출한 지질의 응용가능성 연구 등에 대하여 조사하였다. 선행 연구에서는 커피 부산물인 커피 은피 및 커피찌꺼기 자체를 고분자와 혼합하여 복합소재를 제조하고 물성을 평가하는 연구는 광범위하게 수행되고 있는 것으로 확인되었다. 하지만, 커피 은피 및 커피찌꺼기로부터 나노셀룰로오스를 추출하거나, 상대적으로 친수성인 커피 부산물과 소수성인 석유계 고분자 또는 생분해성 고분자와 복합화 시 상용성 개선과 관련된 커피 부산물의 표면 개질 및 상용화제 도입 등의 연구는 부족함을 확인하였다. 또한 커피 부산물로부터 추출한 지질을 활용하여 PHAs를 합성하는 연구가 일부 진행되고 있지만 합성된 PHAs를 활용하여 포장소재로의 제조 및 응용에 관한 추가적인 연구가 필요하다고 사료된다. 또한, 커피찌꺼기의 발생량 대비 국내외 관리방안 마련 및 제품 적용 시 안전성 평가방법에 관한 연구는 거의 실시되지 않아 이에 대한 추가적인 연구가 필요하다고 판단된다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단(No.2020R1G1A1101282)의 지원을 받아 수행되었으며 이에 감사드립니다.

References

  1. Garcia, C.V. and Kim, Y-T. 2021. Spent coffee grounds and coffee silverskin as potential materials for packaging: a review. J. Polym. Environ. 29: 2372-2384. https://doi.org/10.1007/s10924-021-02067-9
  2. Sisti, L., Celli, A., Totaro, G., Cinelli, P., Signori, F., Lazzeri, A., Bikaki, M., Corvini, P., Ferri, M., Tassoni, A. and Navarini, L. 2021. Monomers, materials and energy from coffee byproducts: a review. Sustainability. 13: 6921.
  3. Hoseini, M., Cocco, S., Casucci, C., Cardelli, V. and Corti, G. 2021. Coffee by-products derived resources. a review. Biomass Bioenergy. 148: 106009.
  4. Duran-Aranguren, D.D., Robledo, S., Gomez-Restrepo, E., Arboleda Valencia, J.W. and Tarazona, N.A. 2021. Scientometric overview of coffee by-products and their applications. Molecules. 26: 7605.
  5. Serna-Jimenez, J.A., Siles, J.A., de los Angeles Martin, M. and Chica, A.F. 2022. A review on the applications of coffee waste derived from primary processing: strategies for revalorization. Processes. 10: 2436.
  6. Nam, G., Kim, M-S. and Ahn, J.W. 2017. Analyses for current research status for the coffee by-product and for status of coffee wastes in Seoul. J. Energy Eng. 26: 14-22.
  7. Esquivel, P. and Jimenez, V.M. 2012. Functional properties of coffee and coffee by-products. Food Res. Int. 46: 488-495. https://doi.org/10.1016/j.foodres.2011.05.028
  8. Hejna, A. 2021. Potential applications of by-products from the coffee industry in polymer technology-current state and perspectives. Waste Manag. 121: 296-330. https://doi.org/10.1016/j.wasman.2020.12.018
  9. Murthy, P.S. and Madhava Naidu, M. 2012. Sustainable management of coffee industry by-products and value addition-a review. Resour. Conserv. Recycl. 66: 45-58. https://doi.org/10.1016/j.resconrec.2012.06.005
  10. Klingel, T., Kremer, J.I., Gottstein, V., Rajcic de Rezende, T., Schwarz, S. and Lachenmeier, D.W. 2020. A Review of coffee by-products including leaf, flower, cherry, husk, silver skin, and spent grounds as novel foods within the European Union. Foods. 9: 665.
  11. Iriondo-DeHond, A., Iriondo-DeHond, M. and Del Castillo, M.D. 2020. Applications of compounds from coffee processing by-products. Biomolecules. 10: 1219.
  12. Campos, R.C., Pinto, V.R.A., Melo, L.F., Da Rocha, S.J.S.S. and Coimbra, J.S. 2021. New sustainable perspectives for "coffee wastewater" and other by-products: a critical review. Future Foods. 4: 100058.
  13. Forcina, A., Petrillo, A., Travaglioni, M., Chiara, S.D. and Felice, F.D. 2023. A comparative life cycle assessment of different spent coffee ground reuse strategies and a sensitivity analysis for verifying the environmental convenience based on the location of sites. J. Clean. Prod. 385: 135727.
  14. Mata, T.M., Martins, A.A. and Caetano, N.S. 2018. Bio-refinery approach for spent coffee grounds valorization. Bioresour. Technol. 247: 1077-1084. https://doi.org/10.1016/j.biortech.2017.09.106
  15. Franca, A.S. and Oliveira, L.S. 2022. Potential uses of spent coffee grounds in the food industry. Foods. 11: 2064.
  16. Oliveira, G., Passos, C.P., Ferreira, P., Coimbra, M.A. and Goncalves, I. 2021. Coffee by-products and their suitability for developing active food packaging materials. Foods 10: 683.
  17. Jimenez-Zamora, A., Pastoriza, S. and Rufian-Henares, J.A. 2015. Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties. LWT - Food Sci. Technol. 61: 12-18.
  18. Narita, Y. and Inouye, K. 2014. Review on utilization and composition of coffee silverskin. Food Res. Int. 61: 16-22. https://doi.org/10.1016/j.foodres.2014.01.023
  19. Sung, S.H., Chang, Y. and Han, J. 2017. Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydr. Polym. 169: 495-503. https://doi.org/10.1016/j.carbpol.2017.04.037
  20. Zarrinbakhsh, N., Wang, T., Rodriguez-Uribe, A., Misra, M. and Mohanty, A.K. 2016. Characterization of wastes and coproducts from the coffee industry for composite material production. BioResources. 11: 7637-7653. https://doi.org/10.15376/biores.11.3.7637-7653
  21. Hejna, A., Barczewski, M., Kosmela, P., Mysiukiewicz, O. and Kuzmin, A. 2021. Coffee silverskin as a multifunctional waste filler for high-density polyethylene green composites. J. Compos. Sci. 5: 44.
  22. Sarasini, F., Tirillo, J., Zuorro, A., Maffei, G., Lavecchia, R., Puglia, D., Dominici, F., Luzi, F., Valente, T. and Torre, L. 2018. Recycling coffee silverskin in sustainable composites based on a poly(butylene adipate-co-terephthalate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrix. Ind. Crop. Prod. 118: 311-320. https://doi.org/10.1016/j.indcrop.2018.03.070
  23. Sarasini, F., Luzi, F., Dominici, F., Maffei, G., Iannone, A., Zuorro, A., Lavecchia, R., Torre, L., Carbonell-Verdu, A. and Balart, R. 2018. Effect of different compatibilizers on sustainable composites based on a PHBV/PBAT matrix filled with coffee silverskin. Polymers. 10: 1256.
  24. Sypabekova, M., Hagemann, A., Rho, D. and Kim, S. 2023. Review: 3-aminopropyltriethoxysilane (APTES) deposition methods on oxide surfaces in solution and vapor phases for biosensing applications. Biosensors. 13: 36.
  25. Ghazvini, A.K.A., Ormondroyd, G., Curling, S., Saccani, A. and Sisti, L. 2022. An investigation on the possible use of coffee silverskin in PLA/PBS composites. J. Appl. Polym. Sci. 139: e52264.
  26. Alghooneh, A., Amini, A.M., Behrouzian, F. and Razavi, S.M.A. 2017. Characterisation of cellulose from coffee silverskin. Int. J. Food Prop. 20: 2830-2843. https://doi.org/10.1080/10942912.2016.1253097
  27. Liu, X., Sun, H. and Leng, X. 2023. Coffee silverskin cellulose-based composite film with natural pigments for food packaging: physicochemical and sensory abilities. Foods. 12: 2839.
  28. Sohn, J.S., Ryu, Y., Yun, C-S., Zhu, K. and Cha, S.W. 2019. Extrusion compounding process for the development of ecofriendly SCG/PP composite pellets. Sustainability. 11: 1720.
  29. Marques, M., Goncalves, L.F.F.F., Martins, C.I., Vale, M. and Duarte, F.M. 2022. Effect of polymer type on the properties of polypropylene composites with high loads of spent coffee grounds. Waste Manag. 154: 232-244. https://doi.org/10.1016/j.wasman.2022.10.009
  30. Essabir, H., Raji, M., Laaziz, S.A., Rodrique, D., Bouhfid, R. and Qaiss, A.E.K. 2018. Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Compos. B. Eng. 149: 1-11.
  31. Tan, M.Y., Nicholas Kuan, H.T. and Lee, M.C. 2017. Characterization of alkaline treatment and fiber content on the physical, thermal, and mechanical properties of ground coffee waste/oxobiodegradable HDPE biocomposites. Int. J. Polym. Sci. 2017: 1-12.
  32. Moustafa, H., Guizani, C. and Dufresne, A. 2017. Sustainable biodegradable coffee grounds filler and its effect on the hydrophobicity, mechanical and thermal properties of biodegradable PBAT composites. J. Appl. Polym. Sci. 134: 44498.
  33. Suaduang, N., Ross, S., Ross, G.M., Pratumshat, S. and Mahasaranon, S. 2019. Effect of spent coffee grounds filler on the physical and mechanical properties of poly(lactic acid) bio-composite films. Mater. Today Proc. 17: 2104-2110. https://doi.org/10.1016/j.matpr.2019.06.260
  34. Lee, H.J., Lee, H.K., Lim, E. and Song, Y.S. 2015. Synergistic effect of lignin/polypropylene as a compatibilizer in multiphase eco-composites. Compos. Sci. Technol. 118: 193-197. https://doi.org/10.1016/j.compscitech.2015.08.018
  35. Wu, C-S. 2015. Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: characterisation and biodegradability. Polym. Degrad. Stab. 121: 51-59. https://doi.org/10.1016/j.polymdegradstab.2015.08.011
  36. Gaidukova, G., Platnieks, O., Aunins, A., Barkane, A., Ingrao, C. and Gaidukovs, S. 2021. Spent coffee waste as a renewable source for the production of sustainable poly (butylene succinate) biocomposites from a circular economy perspective. RSC Adv. 11: 18580-18589. https://doi.org/10.1039/D1RA03203H
  37. Wu, C-S. 2017. Modulation of the interface between polyester and spent coffee grounds in polysaccharide membranes: preparation, cell proliferation, antioxidant activity and tyrosinase activity. Mater. Sci. Eng. C. 78: 530-538.
  38. Mendes, J.F., Martins, J.T., Manrich, A., Sena Neto, A.R., Pinheiro, A.C.M., Mattoso, L.H.C. and Martins, M.A. 2019. Development and physical-chemical properties of pectin film reinforced with spent coffee grounds by continuous casting. Carbohydr. Polym. 210: 92-99. https://doi.org/10.1016/j.carbpol.2019.01.058
  39. Xu, H., Sanchez-Salvador, J.L., Balea, A., Blanco, A. and Negro, C. 2022. Optimization of reagent consumption in TEMPO-mediated oxidation of Eucalyptus cellulose to obtain cellulose nanofibers. Cellulose. 29: 6611-6627. https://doi.org/10.1007/s10570-022-04672-w
  40. Oh, H.W. and Lee, S.H. 2022. A study on film manufacturing methods and quality characteristics using coffee byproducts. Food Eng. Prog. 26: 105-111. https://doi.org/10.13050/foodengprog.2022.26.2.105
  41. Kanai, N., Honda, T., Yoshihara, N., Yoshihara, N., Oyama, T., Naito, A., Ueda, K. and Kawamura, I. 2020. Structural characterization of cellulose nanofibers isolated from spent coffee grounds and their composite films with poly(vinyl alcohol): a new non-wood source. Cellulose. 27: 5017-5028. https://doi.org/10.1007/s10570-020-03113-w
  42. Hibbert, S., Welham, K. and Zein, S.H. 2019. An innovative method of extraction of coffee oil using an advanced microwave system: in comparison with conventional soxhlet extraction method. SN Appl. Sci. 1: 1467.
  43. Williamson, K., Banker, T., Zhao, X., Ortega-Anaya, J., Jimenez-Flores, R., Vodovotz, Y. and Hatzakis, E. 2022. Spent coffee ground oil as a valuable source of epoxides and epoxidation derivatives: quantitation and characterization using low-field NMR. LWT. 165: 113719.
  44. Coelho, J.P., Filipe, R.M., Robalo, M.P., Boyadzhieva, S., Cholakov, G.S. and Stateva, R.P. 2020. Supercritical CO2 extraction of spent coffee grounds. Influence of co-solvents and characterization of the extracts. J. Supercrit. Fluids. 161: 104825.
  45. Ahangari, B. and Sargolzaei, J. 2013. Extraction of lipids from spent coffee grounds using organic solvents supercritical carbon dioxide. J. Food Process. Preserv. 37: 1014-1021. https://doi.org/10.1111/j.1745-4549.2012.00757.x
  46. Mahato, R.P., Kumar, S. and Singh, P. 2023. Production of polyhydroxyalkanoates from renewable resources: a review on prospects, challenges and applications. Arch. Microbiol. 205: 172.
  47. Kang, B-J., Jeon, J-M., Bhatia, S.K., Kim, D-H., Yang, Y-H., Jung, S. and Yoon, J-J. 2023. Two-stage bio-hydrogen and polyhydroxyalkanoate production: upcycling of spent coffee grounds. Polymers. 15: 681.
  48. Cruz, M.V., Paiva, A., Lisboa, P., Freitas, F., Alves, V.D., Simoes, P., Barreiros, S. and Reis, M.A.M. 2014. Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology. Bioresour. Technol. 157: 360-363. https://doi.org/10.1016/j.biortech.2014.02.013
  49. Ingram, H.R. and Winterburn, J.B. 2021. Anabolism of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator DSM 545 from spent coffee grounds oil. N. Biotechnol. 60: 12-19. https://doi.org/10.1016/j.nbt.2020.08.001
  50. Gama, N., Ferreira, A. and Evtuguin, D.V. 2022. New poly(lactic acid) composites produced from coffee beverage wastes. J. Appl. Polym. Sci. 139: 51434.
  51. Min, S., Ezati, P., Yoon, K.S. and Rhim, J-W. 2023. Gelatin/poly(vinyl alcohol)-based functional films integrated with spent coffee ground-derived carbon dots and grapefruit seed extract for active packaging application. Int. J. Biol. Macromol. 231: 123493. https://doi.org/10.1016/j.ijbiomac.2023.123493
  52. Drago, E., Pettinato, M., Campardelli, R., Firpo, G., Lertora, E. and Perego, P. 2022. Zein and spent coffee grounds extract as a green combination for sustainable food active packaging production: an investigation on the effects of the production processes. Appl. Sci. 12: 11311.
  53. Hong, H.S., Kim, Y., Oh, M.J., Lee, Y.M., Lee, H.J. and Cha, E.S. 2018. Overview for coffee grounds recycling technology and future concerns. J. Korea Soc. Waste Manag. 35: 587-599. https://doi.org/10.9786/kswm.2018.35.7.587
  54. Ministry of Environment. 2018. Framework act on resources circulation, article 9 (Recognition of circular resources). 16172.
  55. Ministry of Environment. 2022. Enforcement decree of the framework act on resources circulation, article 6 (Simplification of procedures and method for recognizing circular resources). 33186.
  56. Mayson, S. and Williams, I.D. 2021. Applying a circular economy approach to valorize spent coffee grounds. Resour. Conserv. Recycl. 172: 105659.
  57. Yeoh, L. and Ng, K.S. 2022. Future prospects of spent coffee ground valorisation using a biorefinery approach. Resour. Conserv. Recycl. 179: 106123.
  58. Atabani, A.E., Mahmoud, E., Aslam, M., Naqvi, S.R., Juchelkova, D., Bhatia, S.K., Badruddin, I.A., Yunus Khan, T.M., Hoang, A.T. and Palacky, P. 2023. Emerging potential of spent coffee ground valorization for fuel pellet production in a biorefinery. Environ. Dev. Sustain. 25: 7585-7623. https://doi.org/10.1007/s10668-022-02361-z
  59. Woo, D-G., Kim, S.H. and Kim, T.H. 2021. Solid fuel characteristics of pellets comprising spent coffee grounds and wood powder. Energies. 14: 371.
  60. Solomakou, N., Tsafrakidou, P. and Goula, A.M. 2022. Valorization of SCG through extraction of phenolic compounds and synthesis of new biosorbent. Sustainability. 14: 9358.