DOI QR코드

DOI QR Code

Earthquake Response Analysis of Cylindrical Liquid-Storage Tanks Considering Nonlinear Fluid-Structure Soil Interactions

비선형 유체-구조물-지반 상호작용 고려한 원통형 액체저장탱크의 지진응답해석

  • Jin Ho Lee (Department of Ocean Engineering, Pukyong National University) ;
  • Jeong-Rae Cho (Department of Structural Engineering Research.Urban Disaster Research Cluster, Korea Institute of Civil Engineering and Building Technology)
  • 이진호 (부경대학교 해양공학과) ;
  • 조정래 (한국건설기술연구원 구조연구본부.도시재해재난클러스터)
  • Received : 2024.02.28
  • Accepted : 2024.03.05
  • Published : 2024.04.30

Abstract

Considering fluid-structure-soil interactions, a finite-element model for a liquid-storage tank is presented and the nonlinear earthquake response analysis is formulated. The tank structure is modeled considering shell elements with geometric and material nonlinearities. The fluid is represented by acoustic elements and combined with the structure using interface elements. To consider the soil-structure interactions, the near- and far-field regions of soil are modeled with solid elements and perfectly matched discrete layers, respectively. This approach is applied to the seismic fragility analysis of a 200,000 kL liquid-storage tank. The fragility curve is observed to be influenced by the amplification and filtering of rock outcrop motions at the site when the soil-structure interactions are considered.

유체-구조물-지반 상호작용을 고려한 액체저장탱크의 유한요소 모형을 제시하고, 비선형 지진응답 해석기법을 정식화한다. 탱크 구조물은 기하 및 재료 비선형 거동을 고려할 수 있는 쉘 요소로 모델링한다. 유체의 거동은 acoustic 요소로 구현하고, interface 요소를 사용하여 구조물과 결합한다. 지반-구조물 상호작용을 고려하기 위해 지반의 근역과 원역을 각각 solid 요소와 perfectly matched discrete layer로 모델링한다. 예제 20만 kl급 액체저장탱크의 지진취약도 해석에 적용하여, 유연한 지반에 구조물이 놓인 경우 부지에서의 암반노두운동의 증폭 및 필터링으로 인해 지진취약도의 중앙값과 대수 표준편차가 감소하는 것을 관찰할 수 있다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 한국연구재단-가동원전 안전성 향상 핵심기술 개발사업의 지원을 받아 수행된 연구입니다(No. RS-2022-00144482). 또한, 본 연구는 환경부 재원으로 환경시설 재난재해 대응기술개발사업의 지원을 받아 연구되었습니다. 이에 감사드립니다(2022002850001).

References

  1. ABAQUS (2019) ABAQUS Documentation, Dassault Systemes, Providence, RI, USA.
  2. Bakalis, K., Vamvatsikos, D., Fragiadakis, M. (2017) Seismic Risk Assessment of Liquid Storage Tanks Via a Nonlinear Surrogate Model, Earthq. Eng. & Struct. Dyn., 46(15), pp. 2851~2868.
  3. Bathe, K.J. (2014) Finite Element Procedures, second edition, Prentice Hall, Massachusetts.
  4. Chopra, A.K. (2019) Dynamics of Structures, fifth edition, Pearson, New Jersey.
  5. Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J. (2002) Concepts and Applications of Finite Element Analysis, fourth edition, John Wiley & Sons, Inc, United States.
  6. Hamdan, F.H. (2000) Seismic behavior of Cylindrical Steel Liquid Storage Tanks, J. Constr. Steel Res., 53(3), pp.307~333.
  7. Haroun, M.A. (1980) Dynamic Analyses of Liquid Storage Tanks, EERL 80-4. Earthquake Engineering Research Laboratory Report. California Institute of Technology, California.
  8. Haroun, M.A., Housner, G.W. (1981) Seismic Design of Liquid Storage Tanks, J. Tech. Counc. ASCE, 107(1), pp.191~207. https://doi.org/10.1061/JTCAD9.0000080
  9. Housner, G.W. (1957) Dynamic Pressure on Accelerated Fluid Containers, Bull. Seismol. Soc. Am., 47(1), pp.15~35.
  10. Kim, J.K., Koh, H.M., Kwahk, I.J. (1996) Dynamic Response of Rectangular Flexible Fluid Containers, J. Eng. Mech., 122(9), pp.807~817. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:9(807)
  11. Kim, J.-K., Park, J.-Y., Jin, B.M. (1998a) The Soil-Structure Interaction in Three Dimensional Rectangular Liquid Storage Tanks, J. Korean Soc. Civil Eng., 18(I-6), pp.775~787.
  12. Kim, J.-K., Park, J.-Y., Jin, B.M., Joe, Y.H. (1998b) The Rocking Response of Three Dimensional Rectangular Liquid Storage Tank, J. Earthq. Eng. Soc. Korea, 2(1), pp.23~34.
  13. Koh, H.M., Kim, J.K., Park, J.-H. (1998) Fluid-Structure Interaction Analysis of 3-D Rectangular Tanks by a Variationally Coupled BEM-FEM and Comparison with Test Results, Earthq. Eng. & Struct. Dyn., 27(2), pp.109~124.
  14. Lee, J.H., Kim, J.H., Kim, J.K. (2014) Nonlinear Analysis of Soil-Structure Interaction Using Perfectly Matched Discrete Layers, Comput. & Struct., 142, pp.28~44.
  15. Lee, J.H., Kim, J.H., Kim, J.K. (2016a) Perfectly Matched Discrete Layers for Three-Dimensional Nonlinear Soil-Structure Interaction Analysis, Comput. & Struct., 165, pp.34~47.
  16. Lee, J.H., Kim, J.K., Kim, J.H. (2016b) Nonlinear Earthquake Response Analysis of a Soil-Structure Interaction System Subjected to a Three-Dimensional Ground Motion, J. Comput. Struct. Eng. Inst. Korea, 29(4), pp.317~325. https://doi.org/10.7734/COSEIK.2016.29.4.317
  17. Lee, J.H., Lee, S.H. (2020) Characteristics of Earthquake Responses of Rectangular Liquid Storage Tanks Subjected to Bi-directional Horizontal Ground Motions, J. Comput. Struct. Eng. Inst. Korea, 33(1), pp.45~53. https://doi.org/10.7734/COSEIK.2020.33.1.45
  18. Lee, J.H., Tassoulas, J.L. (2011) Consistent Transmitting Boundary with Continued-Fraction Absorbing Boundary Conditions for Analysis of Soil-Structure Interaction in a Layered Half-Space, Comput. Methods Appl. Mech. & Eng., 200, pp.1509~1525.
  19. Park, J.-H., Koh, H.M., Kim, J.K. (2000) Seismic Isolation of Pool-Type Tanks for the Storage of Nuclear Spent Fuel Assemblies, Nucl. Eng. & Des., 199(1-2), pp.143~154.
  20. Veletsos, A.S. (1984) Seismic Response and Design of Liquid Storage Tanks, Guidelines for the Seismic Design of Oil and Gas Pipeline Systems, Technical Council on Lifeline Earthquake Engineering, ASCE, New York.
  21. Veletsos, A.S., Tang, Y. (1990) Soil-structure interaction effects for laterally excited liquid-storage tanks, Earthquake Engineering and Structural Dynamics, 19, pp.473~496.
  22. Yang, J.Y. (1976) Dynamic Behavior of Fluid-Tank Systems, Ph.D. Dissertation, Rice University, Texas.