DOI QR코드

DOI QR Code

Development and Verification of Approximate Methods for In-Structure Response Spectrum (ISRS) Scaling

구조물내응답스펙트럼 스케일링 근사 방법 개발 및 검증

  • Shinyoung Kwag (Department of Civil & Environmental Engineering, Hanbat National University) ;
  • Chaeyeon Go (Department of Civil & Environmental Engineering, Hanbat National University) ;
  • Seunghyun Eem (Department of Convergence and Fusion System Engineering, Kyungpook National University) ;
  • Jaewook Jung (Korea Atomic Energy Research Institute) ;
  • In-Kil Choi (Korea Atomic Energy Research Institute)
  • 곽신영 (국립한밭대학교 건설환경공학과) ;
  • 고채연 (국립한밭대학교 건설환경공학과) ;
  • 임승현 (경북대학교 융복합시스템공학과) ;
  • 정재욱 (한국원자력연구원 첨단구조지진안전연구부) ;
  • 최인길 (한국원자력연구원 첨단구조지진안전연구부)
  • Received : 2024.01.15
  • Accepted : 2024.01.26
  • Published : 2024.04.30

Abstract

An in-structure response spectrum (ISRS) is required to evaluate the seismic performance of a nuclear power plant (NPP). However, when a new ISRS is required because of the change in the unique spectrum of an NPP site, considerable costs such as seismic response re-analyses are incurred. This study provides several approaches to generate approximate methods for ISRS scaling, which do not require seismic response re-analyses. The ISRSs derived using these approaches are compared to the original ISRS. The effect of the ISRS of the approximate method on the seismic response and seismic performance of one of the main systems of an NPP is analyzed. The ISRS scaling approximation methods presented in this study produce ISRSs that are relatively similar at low frequencies; however, the similarity decreases at high frequencies. The effect of the ISRS scaling approximate method on the calculation accuracy of the seismic response/seismic performance of the system is determined according to the degree of similarity in the calculation of the system's essential mode responses for the method.

원자력발전소(원전) 시스템 내진성능 평가를 위하여 구조물내응답스펙트럼(ISRS)은 필수적으로 요구된다. 특히, 원전 부지 고유 스펙트럼 변경 시 새로운 ISRS 도출이 요구될 경우 지진 재해석 등의 상당한 비용을 필요로 하게 된다. 따라서 이 연구는 지진 재해석이 필요 없는 ISRS 스케일링 근사 방법에 대한 여러 가지 접근법을 제공한다. 이러한 접근법으로 도출한 ISRS는 정확한 ISRS와 비교한다. 근사 방법의 ISRS 가 원전 주요 시스템 지진응답 및 내진성능에 미치는 영향을 분석한다. 결과적으로 본 연구에서 제시한 ISRS 스케일링 근사 방법은 저주파에서 비교적 유사하게 ISRS를 도출하지만, 고주파에서는 그 정확도가 감소하였다. ISRS 스케일링 근사방법이 시스템 지진응답/내진성능 산출 정확도에 미치는 영향은 방법의 시스템 주요 모드 응답 유사도 산출 정도에 따라 결정된 것을 확인할 수 있었다.

Keywords

Acknowledgement

이 논문은 2023학년도 한밭대학교 교내학술연구비의 지원을 받았음.

References

  1. ASCE/SEI 4-16 (2017) Seismic Analysis of Safety-related Nuclear Structures, American Society of Civil Engineers/Structural Engineering Institute.
  2. ASME (2007) 2007 ASME Boiler & Pressure Vessel Code, Section III, Division I, Subsection NB, The American Society of Mechanical Engineers.
  3. Calvi, P.M., Sullivan, T.J. (2014) Estimating Floor Spectra in Multiple Degree of Freedom Systems, Earthq. & Struct., 7(1), pp.17-38.
  4. Cheung, J.H., Gae, M.S., Seo, Y.D., Choi, H.S., Kim, M.K. (2013) Seismic Capacity Test of Nuclear Piping System using Multi-Platform Shake Table, J. Earthq. Eng. Soc. Korea, 17(1), pp.21-31. https://doi.org/10.5000/EESK.2013.17.1.021
  5. Crandall, S.H., Mark, W.D. (1963) Random Vibration in Mechanical Systems. Academic Press, New York, US.
  6. EPRI (2002) Seismic Fragility Application Guide, No.1019200; Electric Power Research Institute: Palo Alto, CA, USA, Dec. 2002.
  7. EPRI (2013) Seismic Probabilistic Risk Assessment Implementation Guide, No.3002000709; Electric Power Research Institute: Palo Alto, CA, USA, Dec. 2013.
  8. EPRI (2018) Seismic Fragility and Seismic Margin Guidance for Seismic Probabilistic Risk Assessments, No.3002012994; Electric Power Research Institute: Palo Alto, CA, USA, Sept. 2018.
  9. Jiang, W., Li, B., Xie, W.C., Pandey, M.D. (2015) Generate Floor Response Spectra: Part 1. Direct Spectra-To-Spectra Method, Nucl. Eng. & Des., 293, pp.525-546.
  10. Jiang, W., Liu, W., Xie, W.C., Pandey, M.D. (2017) A Scaling Method for Generating Floor Response Spectra, Ann. Nucl. Energy, 110, pp.613-632.
  11. KEPCO E&C (1992) Seismic Analysis of Containment Building, ULCHIN Nuclear Power Plant Units 3&4, Report Number 9-310-C455-001, Korea Electronic Power Corporation.
  12. Kim, J.H., Park, J.H., Choi, I.K. (2013) Evaluation of the Seismic Response Considering Site Effect and Nonlinear Structural Behavior, KAERI/TR-5369/2013, Korea Atomic Energy Research Institute.
  13. Kwag, S., Eem, S., Jung, K., Jung, J., Choi, I.K. (2022) A Study on the Effects of Nuclear Power Plant Structure-Component Interaction in Component Seismic Responses, J. Comput. Struct. Eng. Inst. Korea, 35(2), pp.83-91. https://doi.org/10.7734/COSEIK.2022.35.2.83
  14. Kwag, S., Eem, S.H., Kwak, J.S., Oh, J. (2020) Evaluation Model of Seismic Response Behavior and Performance of Nuclear Plant Piping Systems, J. Korean Soc. Adv. Compos. Struct, 11, pp.54-62. https://doi.org/10.11004/kosacs.2020.11.1.054
  15. Li, B., Jiang, W., Xie, W.C., Pandey, M.D. (2015) Generate Floor Response Spectra, Part 2: Response Spectra for Equipment-Structure Resonance, Nucl. Eng. & Des., 293, pp.547-560.
  16. Lucchini, A., Franchin, P., Mollaioli, F. (2017a) Uniform Hazard Floor Acceleration Spectra for Linear Structures, Earthq. Eng. & Struct. Dyn., 46(7), pp.1121-1140.
  17. Lucchini, A., Franchin, P., Mollaioli, F. (2017b) Spectrum-To-Spectrum Methods for the Generation of Elastic Floor Acceleration Spectra, Proc. Eng., 199, pp.3552-3557. https://doi.org/10.1016/j.proeng.2017.09.514
  18. Sharma, A., Singh M.P. (1983) Direct Generation of Seismic Floor Response Spectra for Classically and Nonclassically Damped Structures, Final Report, Department of Engineering Science &Mechanics, Virginia Polytechnic Institute &State University, Blacksburg, VA 24061.
  19. Singh, M.P. (1975) Generation of Seismic Floor Spectra, J. Eng. Mech. Div., 101(5), pp.593-607. https://doi.org/10.1061/JMCEA3.0002053
  20. Singh, M.P. (1980) Seismic Design Input for Secondary Systems, J. Struct. Div., 106(2), pp.505-517. https://doi.org/10.1061/JSDEAG.0005371
  21. Sullivan, T.J., Calvi, P.M., Nascimbene, R. (2013) Towards Improved Floor Spectra Estimates for Seismic Design, Earthq. & Struct., 4(1), pp.109-132.
  22. USNRC (2007) P-CARES: Probabilistic Computer Analysis for Rapid Evaluation, NUREG/CR-6922, 158p.
  23. USNRC RG 1.60 (2014) Design Response Spectra for Seismic Design of Nuclear Power Plants, Rev. 2, U.S. Nuclear Regulatory Commission.
  24. USNRC RG 1.61 (2007) Damping Values for Seismic Design of Nuclear Power Plants, Rev. 1, U.S. Nuclear Regulatory Commission.