DOI QR코드

DOI QR Code

Development of a Structural-Analysis Model for Blast-Resistant Design of Plant Facilities Subjected to Vapor-Cloud Explosion

증기운 폭발을 받는 플랜트 시설물의 내폭설계를 위한 구조 해석 모델 개발

  • Bo-Young Choi (Department of Architecture, Konkuk University) ;
  • Seung-Hoon Lee (Department of Architecture, Konkuk University) ;
  • Han-Soo Kim (Department of Architecture, Konkuk University)
  • Received : 2024.01.02
  • Accepted : 2024.01.05
  • Published : 2024.04.30

Abstract

In this study, a nonlinear dynamic analysis of a frame and single member, which reflect the characteristics of a plant facility, is performed using the commercial MIDAS GEN program and the results are analyzed. The general structural members and material properties of the plant are considered. The Newmark average-acceleration numerical-analysis method is applied to a plastic hinge to study material nonlinearity. The blast load of a vapor-cloud explosion, a representative plant explosion, is calculated, and nonlinear dynamic analysis is conducted on a frame and single member. The observed dynamic behavior is organized according to the ratio of natural period to load duration, maximum displacement, ductility, and rotation angle. The conditions and range under which the frame functions as a single member are analyzed and derived. NSFF with a beam-column stiffness ratio of 0.5 and ductility of 2.0 or more can be simplified and analyzed as FFC, whereas NSPF with a beam-column stiffness ratio of 0.5 and ductility of 1.5 or more can be simplified and analyzed as FPC. The results of this study can serve as guidelines for the blast-resistant design of plant facilities.

본 논문에서는 상용 프로그램 MIDAS GEN을 활용하여 플랜트 시설물의 특성을 반영한 골조와 단일 부재의 비선형 동적 해석을 수행하였으며 이에 따른 결과를 분석하였다. 플랜트에 배치되는 일반적인 구조 부재의 크기와 재료적 특성을 고려하였으며, 수치해석 방법 중 뉴마크 평균 가속도법, 재료 비선형을 고려하기 위한 소성 힌지를 적용하였다. 플랜트 폭발의 대표적 유형인 증기운 폭발의 폭발하중을 산정하였으며, 이를 골조 및 단일 부재에 적용하여 비선형 동적 해석을 수행하였다. 동적 거동의 결과는 고유주기와 하중지속시간의 비율, 최대변위, 연성도, 회전각으로 정리하였으며 골조를 단일 부재로 해석할 수 있는 조건과 범위를 분석 및 확인하였다. 보-기둥 강성비가 0.5, 연성도가 2.0 이상인 NSFF는 FFC로 단순화할 수 있으며, 보-기둥 강성비가 0.5, 연성도가 1.5 이상인 NSPF는 FPC로 단순화하여 해석할 수 있다. 본 연구의 결과는 플랜트 시설물의 내폭설계 가이드라인으로 활용될 수 있다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호 RS-2021-KA163162).

References

  1. ASCE (2010) Design of Blast-Resistant Buildings in Petrochemical Facilities, American Society of Civil Engineer, Virginia, p.300.
  2. ASCE (2011) Blast Protection of Buildings, American Society of Civil Engineer, Virginia, p.108.
  3. Astarlioglu, S., Krauthammer, T., Morency, D., Tran, T.P. (2013) Behavior of Reinforced Concrete Columns Under Combined Effects of Axial and Blast-Induced Transverse Loads, Eng. Strcut., 55, pp.26~34.
  4. Biggs, J.M. (1964) Introduction to Structural Dynamics, McGrawHill, New York, p.341.
  5. CCPS (2012) Guidelines for Evaluating Process Plant Buildings for External Explosions, Fires and Toxic Releases, Center for Chemical Process Safety, New York, p.219.
  6. Dusenberry, D.O. (2010) Handbook for Blast- Resistant Design of Buildings, John Wiley & Sons, Inc, New Jersey and Canada, p.486.
  7. Elvira, Mendis, P., Lam, N., Ngo, T. (2006) Progressive Collapse Analysis of RC Frames Subjected to Blast Loading, Aust. J. Struct. Eng., 7(1), pp.47~55.
  8. FEMA 273 (1997) Nehrp Guidelines for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, California, p.435.
  9. Jayasooriya, R., Thambiratnam, D.P, Perera, N., Kosse, V. (2011) Blast and Residual Capacity Analysis of Reinforced Concrete Framed Buildings, Eng. Struct., 33(12), pp.3483~3495.
  10. KFS 701 (2020) Standard on Plant Layout and Spacing for Oil and Petrochemical Plants, Korea Fire Safety Standards, Korea, p.29.
  11. Lee, S.H., Choi, B.Y., Kim, H.S. (2024) Development of Design Blast Load Model according to Probabilistic Explosion Risk in Industrial Facilities, J. Comput. Struct. Eng. Inst. Korea, 37(1), pp.1~8. https://doi.org/10.7734/COSEIK.2024.37.1.1
  12. Lee, S.H., Kim, H.S. (2021) Study on the Calculation of the Blast Pressure of Vapor Cloud Explosions by Analyzing Plant Explosion Cases, J. Comput. Struct. Eng. Inst. Korea, 34(1), pp.1~8. https://doi.org/10.7734/COSEIK.2021.34.1.1
  13. MARSH (2022) 100 Largest Losses in the Hydrocarbon Industry, MARSH Ltd., UK, p.81.
  14. UFC 3-340-02 (2008) Structures to Resist the Effects of Accidental Explosions, Depart of Defence(DoD), p.1943.
  15. van den Berg, A.C. (1985) The Multi-energy Method: A Framework for Vapour Cloud Explosion Blast Prediction, J. Haz. Mater., 12(1), pp.1~10.
  16. Zerrouki, H., Smadi, H. (2017) Bayesian Belief Network Used in the Chemical and Process Industry: A Review and Application, J. Fail. Anal. Prev, 17, pp.159~165. https://doi.org/10.1007/s11668-016-0231-x
  17. Zhang, J.H., Chen, B., Jiang, S. Y. (2017) A Simplified Model to Predict Blast Response of CFST Columns, J. Cent. South University, 24, pp.683~691. https://doi.org/10.1007/s11771-017-3469-x