DOI QR코드

DOI QR Code

연속 조성 확산 증착 방법을 통한 저항 온도 계수의 튜닝

Tuning for Temperature Coefficient of Resistance Through Continuous Compositional Spread Sputtering Method

  • 박지훈 (울산과학기술원 신소재공학과) ;
  • 선정우 (울산과학기술원 신소재공학과) ;
  • 최우진 (울산과학기술원 신소재공학과) ;
  • 진상준 (스마트전자(주) 개발팀) ;
  • 김진환 (스마트전자(주) 개발팀) ;
  • 전동호 (스마트전자(주) 개발팀) ;
  • 윤생수 (스마트전자(주) 개발팀) ;
  • 천재일 (스마트전자(주) 개발팀) ;
  • 임진주 (스마트전자(주) 개발팀) ;
  • 조욱 (울산과학기술원 신소재공학과)
  • Ji-Hun Park (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Jeong-Woo Sun (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Woo-Jin Choi (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Sang-Joon Jin (Department of Research and Development, SMART Electronics Inc.) ;
  • Jin-Hwan Kim (Department of Research and Development, SMART Electronics Inc.) ;
  • Dong-Ho Jeon (Department of Research and Development, SMART Electronics Inc.) ;
  • Saeng-Soo Yun (Department of Research and Development, SMART Electronics Inc.) ;
  • Jae-Il Chun (Department of Research and Development, SMART Electronics Inc.) ;
  • Jin-Ju Lim (Department of Research and Development, SMART Electronics Inc.) ;
  • Wook Jo (Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • 투고 : 2024.03.14
  • 심사 : 2024.03.22
  • 발행 : 2024.05.01

초록

The low-temperature coefficient of resistance (TCR) is a crucial factor in the development of space-grade resistors for temperature stability. Consequently, extensive research is underway to achieve zero TCR. In this study, resistors were deposited by co-sputtering nickel-chromium-based composite compositions, metals showing positive TCR, with SiO2, introducing negative TCR components. It was observed that achieving zero TCR is feasible by adjusting the proportion of negative TCR components in the deposited thin film resistors within certain compositions. Additionally, the correlation between TCR and deposition conditions, such as sputtering power, Ar pressure, and surface roughness, was investigated. We anticipate that these findings will contribute to the study of resistors with very low TCR, thereby enhancing the reliability of space-level resistors operating under high temperatures.

키워드

과제정보

이 논문은 2023년도 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행된 연구입니다(NRF-2021M1A3B2A01078712).

참고문헌

  1. N. Venkat, T. D. Dang, Z. Bai, V. K. McNier, J. N. DeCerbo, B. H. Tsao, and J. T. Stricker, Mater. Sci. Eng. B, 168, 16 (2010). doi: https://doi.org/10.1016/j.mseb.2009.12.038
  2. A. Bensoussan and E. Suhir, Proc. 2013 IEEE Aerospace Conference (IEEE, Big Sky, USA, 2013) p. 1. doi: https://doi.org/10.1109/AERO.2013.6496831
  3. E. Suhir, J. Appl. Math. Mech., 98, 824 (2018). doi: https://doi.org/10.1002/zamm.201700271
  4. A. J. Wileman, S. Aslam, and S. Perinpanayagam, Prog. Aerosp. Sci., 127, 100739 (2021). doi: https://doi.org/10.1016/j.paerosci.2021.100739
  5. P. L. Kirby, Thin Solid Films, 50, 211 (1978). doi: https://doi.org/10.1016/0040-6090(78)90107-4
  6. B. J. Lee, B. H. Lee, and D. C. Lee, Jpn. J. Appl. Phys., 42, 1405 (2003). doi: https://doi.org/10.1143/JJAP.42.1405
  7. C. C. Lukose, G. Zoppi, and M. Birkett, Proc. 39th International Microelectronics and Packaging IMAPS Poland 2015 Conference (IOP Publishing Ltd, Gdansk, Poland, 2016) p. 012003. doi: https://doi.org/10.1088/1757-899X/104/1/012003
  8. O. J. Gregory and X. Chen, Proc. SENSORS, 2007 IEEE (IEEE, Atlanta, USA, 2007) p. 624. doi: https://doi.org/10.1109/ICSENS.2007.4388476
  9. I. Krylov, Y. Qi, V. Korchnoy, K. Weinfeld, M. Eizenberg, and E. Yalon, Appl. Phys. Lett., 117, 041902 (2020). doi: https://doi.org/10.1063/5.0012739
  10. B. Fu and L. Gao, Scripta Mater., 55, 521 (2006). doi: https://doi.org/10.1016/j.scriptamat.2006.05.031
  11. K. Chu, S. C. Lee, S. Lee, D. Kim, C. Moon, and S. H. Park, Nanoscale, 7, 471 (2015). doi: https://doi.org/10.1039/C4NR04489D
  12. J. Rolke, Electrocomponent Sci. Technol., 9, 51 (1981). doi: https://doi.org/10.1155/APEC.9.51
  13. E. Schippel, Thin Solid Films, 144, 21 (1986). doi: https://doi.org/10.1016/0040-6090(86)90066-0
  14. F. B. Chang and L. N. Kang, Thin Solid Films, 185, 341 (1990). doi: https://doi.org/10.1016/0040-6090(90)90097-W
  15. W. Bruckner, St. Baunack, D. Elefant, and G. Reiss, J. Appl. Phys., 79, 8516 (1996). doi: https://doi.org/10.1063/1.362531
  16. B. J. Lee, G. B. Park, D. H. You, and D. C. Lee, Proc. 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE, Albuquerque, USA, 2003) p. 72. doi: https://doi.org/10.1109/CEIDP.2003.1254797
  17. B. J. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 21, 57 (2008). doi: https://doi.org/10.4313/JKEM.2008.21.1.057
  18. H. Deng, S. Yuan, X. Yang, J. Zhang, J. Khan, Y. Zhao, M. Ishaq, W. Ye, Y. B. Cheng, H. Song, and J. Tang, Prog. Photovoltaics: Res. Appl., 26, 281 (2018). doi: https://doi.org/10.1002/pip.2980
  19. S. Gong, Z. H. Zhu, and Z. Li, Phys. Chem. Chem. Phys., 19, 5113 (2017). doi: https://doi.org/10.1039/C6CP08115K