DOI QR코드

DOI QR Code

BaZrO3:Eu3+ 적색 형광체의 발광과 농도 소광 특성

Luminescence and Concentration Quenching Properties of BaZrO3:Eu3+ Red-Emitting Phosphors

  • Nguyen Thi Kim Ngan (Department of Batteries Science and Engineering, Silla University) ;
  • Shinho Cho (Department of Batteries Science and Engineering, Silla University)
  • 투고 : 2023.12.21
  • 심사 : 2024.01.11
  • 발행 : 2024.05.01

초록

Eu3+-doped BaZrO3 (BaZrO3:Eu3+) phosphor powders were prepared using a solid-state reaction by changing the molar concentration of Eu3+ within the range of 0.5 to 30 mol%. Irrespective of the molar concentration of Eu3+ ions, the crystal structures of all the phosphors were cubic. The excitation spectra of BaZrO3:Eu3+ phosphors consisted of an intense broad band centered at 277 nm in the range of 230~320 nm. The emission spectra were composed of a dominant orange band at 595 nm arising from the 5D07F1 magnetic dipole transition of Eu3+ and two weak emission bands centered at 574 and 615 nm, respectively. As the concentration of Eu3+ increased from 0.5 to 10 mol%, the intensities of all the emission bands gradually increased, approached maxima at 10 mol% of Eu3+ ions, and then showed a decreasing tendency with further increase in the Eu3+ ions due to the concentration quenching. The critical distance between neighboring Eu3+ ions for concentration quenching was calculated to be 11.21 Å, indicating that dipole-dipole interaction was the main mechanism of concentration quenching of BaZrO3:Eu3+ phosphors. The results suggest that the orange emission intensity can be modulated by doping the appropriate concentration of Eu3+ ions.

키워드

참고문헌

  1. S. Cho, J. Korean Phys. Soc., 74, 707 (2019). doi: https://doi.org/10.3938/jkps.74.707 
  2. P. Du and J. S. Yu, Mater. Res. Bull., 70, 553 (2015). doi: https://doi.org/10.1016/j.materresbull.2015.05.022 
  3. B. Yan and X. Xiao, Nanoscale Res. Lett., 5, 1962 (2010). doi: https://doi.org/10.1007/s11671-010-9733-8 
  4. A. K. Parchur and R. S. Ningthoujam, RSC Adv., 2, 10859 (2012). doi: https://doi.org/10.1039/C2RA22144F 
  5. B. S. Tsai, Y. H. Chang, and Y. C. Chen, Electrochem. Solid-State Lett., 8, H55 (2005). doi: https://doi.org/10.1149/1.1921128 
  6. Y. Li and X. Liu, Opt. Mater., 42, 303 (2015). doi: https://doi.org/10.1016/j.optmat.2015.01.018 
  7. S. Sasikumar, H. Fan, W. Wang, S. Saravanakumar, D. Sivaganesh, and K. Aravinth, J. Mater. Sci.: Mater. Electron., 32, 12253 (2021). doi: https://doi.org/10.1007/s10854-021-05854-1 
  8. X. Q. Cao, R. Vassen, and D. Stoever, J. Eur. Ceram. Soc., 24, 1 (2004). doi: https://doi.org/10.1016/S0955-2219(03)00129-8 
  9. Kh. Dhahri, M. Bejar, E. Dhahri, M. J. Soares, M.F.P. Graca, M. A. Sousa, and M. A. Valente, Chem. Phys. Lett., 610, 341 (2014). doi: https://doi.org/10.1016/j.cplett.2014.07.057 
  10. S. K. Gupta, N. Pathak, and R. M. Kadam, J. Lumin., 169, 106 (2016). doi: https://doi.org/10.1016/j.jlumin.2015.08.032 
  11. P. P. Khirade, S. D. Birajdar, A. B. Shinde, and K. M. Jadhav, J. Alloys Compd., 691, 287 (2017). doi: https://doi.org/10.1016/j.jallcom.2016.08.224 
  12. R. B. Basavaraj, S. Kumar, D. P. Aarti, G. Nagaraju, H.M.S. Kumar, R. Soundar, T. S. Shashidhara, H. N. Sumedha, and M. Shahsank, Inorg. Chem. Commun., 128, 108577 (2021). doi: https://doi.org/10.1016/j.inoche.2021.108577 
  13. Z. Hao, J. Zhang, X. Zhang, and X. Wang, Opt. Mater., 33, 355 (2011). doi: https://doi.org/10.1016/j.optmat.2010.09.035 
  14. W. J. Yang, L. Luo, T. M. Chen, and N. S. Wang, Chem. Mater., 17, 3883 (2005). doi: https://doi.org/10.1021/cm050638f 
  15. S. Cho, J. Korean Phys. Soc., 72, 959 (2018). doi: https://doi.org/10.3938/jkps.72.959 
  16. G. Blasse, J. Solid State Chem., 62, 207 (1986). doi: https://doi.org/10.1016/0022-4596(86)90233-1 
  17. H.A.A. Seed Ahmed, H. C. Swart, P. Bergman, and R. E. Kroon, Mater. Res. Bull., 75, 47 (2016). doi: https://doi.org/10.1016/j.materresbull.2015.11.024 
  18. D. L. Dexter, J. Chem. Phys., 21, 836 (1953). doi: https://doi.org/10.1063/1.1699044 
  19. W. B. Im, Y. I. Kim, J. H. Kang, D. Y. Jeon, H. K. Jung, and K. Y. Jung, J. Mater. Res., 20, 2061 (2005). doi: https://doi.org/10.1557/JMR.2005.0253