DOI QR코드

DOI QR Code

도시열환경 개선 및 보행자 열 쾌적성 증대를 위한 효율적 가로녹지 조성방안 연구 - 계획 및 설계를 위한 매개변수 도출과 녹지조성 방법 제안을 중심으로 -

A Study on Efficient Sidewalk Green Space Development for Improving Urban Thermal Environments and Enhancing Pedestrian Comfort - Focused on the Derivation of Parameters for Design, and Proposing Methods for Green Space Creation -

  • 박주현 (경북대학교 대학원 조경학과) ;
  • 엄정희 (경북대학교 산림과학.조경학부 조경학전공)
  • Park, Ju-Hyeon (Dept. of Landscape Architecture, Kyungpook National University) ;
  • Eum, Jeong-Hee (Dept. of Landscape Architecture, Kyungpook National University)
  • 투고 : 2024.01.29
  • 심사 : 2024.02.21
  • 발행 : 2024.04.30

초록

본 연구는 문헌 고찰을 통해 도시 열환경 개선 및 보행자 열쾌적성 증대를 위한 효율적인 가로녹지 조성방안을 제안하는 것이 목적이다. 특히, 녹지 계획 및 설계에 활용가능한 매개변수를 도출하고, 매개변수별로 열환경 완화 매커니즘을 분석한 후, 이를 바탕으로 녹지 계획 및 설계 시 활용가능한 수종선택 방법 및 녹지조성 방법을 제안하였다. 이를 위해 국내외 관련 논문 중 4단계 과정을 통해 고찰하고자 하는 61개의 논문을 선정하였으며, 선정된 논문을 분석하여 다음과 같은 주요 결과를 도출하였다. 열스트레스가 높은 종횡비 낮고 천공률이 높은 오픈된 거리협곡의 경우, 그늘의 양과 질을 높이기 위해 수관폭이 넓고, 수고가 높고, 지하고가 낮고, 엽면적 지수가 높고, 수관의 녹량이 많은 활엽수를 다열의 좁은 간격으로 다층식재하는 것이 열저감에 효과적이다. 반면 열스트레스가 비교적 적은 종횡비가 높고 천공률이 낮은 깊고 좁은 거리협곡의 경우, 거리협곡 내 환기력을 높이기 위해 수관폭이 좁고, 지하고가 높고, 수관높이가 낮고, 엽면적 지수가 낮은 활엽수를 넓은 간격으로 식재하는 것이 열저감에 효과적이다. 본 연구는 거리협곡 내 열환경 개선 및 보행자 열쾌적성 증대를 위한 가로녹지 조성의 기초자료로 활용할 수 있으며, 녹지의 위치 선정 및 우선순위 선정 시 기초자료로 활용할 수 있다. 나아가 기후변화 대응을 위한 녹지 계획 및 설계를 위한 가이드라인 작성 시 기초자료로 활용될 수 있을 것으로 기대한다.

This study aims to establish an efficient street green area to improve the urban thermal environment and enhance pedestrian thermal comfort. Specifically, This study identified parameters applicable to green space planning and design, analyzed thermal environment mitigation mechanisms for each parameter, and, based on these findings, proposed methods for tree species selection and planting in green space planning and design. To achieve this, 61 papers were selected through a four-stage process from both domestic and foreign sources. The selected papers were analyzed, and the following main results were derived: In open street canyons with high stress levels due to low aspect ratios and high sky view factors(SVF), broadleaf trees with wide crown widths, low trunk heights, high leaf area index(LAI), and high crown heights were found effective in reducing heat, thereby increasing the amount and quality of shade. In contrast, in deep and narrow street canyons with relatively low heat stress due to high aspect ratios and low SVF, broad-leaved trees with narrow crown widths, high trunks, low crown heights, and low LAI were effective in reducing heat by enhancing ventilation. This study can serve as fundamental data for establishing standards for street green spaces to improve the thermal environment of street canyons and enhance thermal comfort of pedestrians. Additionally, it can be valuable when selecting the location and prioritizing street green spaces. Moreover, it is anticipated to be a foundational resource for creating guidelines for green space planning and design in response to climate change.

키워드

참고문헌

  1. 권유진, 이동근, 안새결(2019) 미시적 열섬현상 저감을 위한 도시 가로수 식재 시나리오별 분석 - 서울시를 대상으로. 환경영향평가 28(1): 23-34. https://doi.org/10.14249/EIA.2019.28.1.23
  2. 김민순, 김형규(2023). 도심의 거리 협곡에서 건폐율과 외관비에 따른 미세먼지 농도의 미시적 분포 추정. 국토연구: 43-60.
  3. 민진규, 엄정희, 성욱제, 손정민, 김주은(2022) 녹지조성 시나리오에 따른 도시 열환경 개선 효과 분석. 한국조경학회지 50(6): 1-14.
  4. 산림청(2022) 가로수 조성 관리 매뉴얼. 산림청 보고서.
  5. 엄정희, 민진규, 박주현, 손정민, 서홍덕, 오정학(2023) 가로수 식재 시나리오에 따른 기온 및 미세먼지 저감 효과 분석. 한국지리정보학회지 26(2): 68-81. https://doi.org/10.11108/KAGIS.2023.26.2.068
  6. 엄정희, 박주현, 손정민, 성욱제, 민진규, 김주은(2022) 바람길숲 유형별 조성 효과 및 환경 특성 분석. 국립산림과학원 연구보고서.
  7. 임현우, 조상만, 박수국(2022) ENVI-Met 시뮬레이션을 통한 도로 방향별 가로수 식재 형태에 따른 여름철 열 환경 개선 효과 분석. Journal of the Korean Institute of Landscape Architecture 50(2): 1-22.
  8. 정희은, 한봉호, 곽정인(2015) 서울 도심 가로수 및 가로녹지의 기온 저감 효과와 기능 향상 연구. 한국조경학회지 43(4): 37-49. https://doi.org/10.9715/KILA.2015.43.4.037
  9. 최원준, 이상훈, 윤용한, 김정호(2019) 거리협곡 내 가로수 식재구조에 의한 복사에너지 변화. 한국환경생태학회 학술발표논문집 2019(2): 61-61.
  10. Abreu-Harbich, L. V., L. C. Labaki and A. Matzarakis(2013) Thermal bioclimate in idealized urban street canyons in Campinas, Brazil. Theoretical and Applied Climatology: 1-8.
  11. Achour-Younsi, S. and F. Kharrat(2016) Outdoor thermal comfort: Impact of the geometry of an urban street canyon in a Mediterranean subtropical climate-Case study Tunis, Tunisia. Procedia-Social and Behavioral Sciences 216: 689-700. https://doi.org/10.1016/j.sbspro.2015.12.062
  12. Akbari, H. and R. Levinson(2008) Evolution of cool-roof standards in the US. Advances in Building Energy Research 2: 1-32. https://doi.org/10.3763/aber.2008.0201
  13. Alexander, L. V. and J. M. Arblaster(2009) Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. International Journal of Climatology: A Journal of the Royal Meteorological Society 29(3): 417-435. https://doi.org/10.1002/joc.1730
  14. Ali-Toudert, F. and H. Mayer(2006) Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment 41(2): 94-10.
  15. Andreou, E.(2013) Thermal comfort in outdoor spaces and urban canyon microclimate. Renewable Energy 55: 182-188. https://doi.org/10.1016/j.renene.2012.12.040
  16. Andreou, E.(2014) The effect of urban layout, street geometry and orientation on shading conditions in urban canyons in the Mediterranean. Renewable Energy 63: 587-596. https://doi.org/10.1016/j.renene.2013.09.051
  17. Antoszewski, P., D. Swierk and M. Krzyzaniak(2020) Statistical review of quality parameters of blue-green infrastructure elements important in mitigating the effect of the urban heat island in the temperate climate(C) zone. International Journal of Environmental Research and Public Health 17(19): 7093.
  18. Antoszewski, P., M. Krzyzaniak and D. Swierk(2022) The future of climate-resilient and climate-neutral city in the temperate climate zone. International Journal of Environmental Research and Public Health 19(7): 4365.
  19. Balany, F., A. W. Ng, N. Muttil, S. Muthukumaran and M. S. Wong(2020) Green infrastructure as an urban heat island mitigation strategy-a review. Water 12(12): 3577.
  20. Ballinas, M. and V. L. Barradas(2016) The urban tree as a tool to mitigate the urban heat island in Mexico City: A simple phenomenological model. Journal of Environmental Quality 45(1): 157-166. https://doi.org/10.2134/jeq2015.01.0056
  21. Chatzidimitriou, A. and S. Yannas(2017) Street canyon design and improvement potential for urban open spaces: The influence of canyon aspect ratio and orientation on microclimate and outdoor comfort. Sustainable Cities and Society 33: 85-101. https://doi.org/10.1016/j.scs.2017.05.019
  22. Chen, T., H. Yang, G. Chen, C. K. C. Lam, J. Hang, X. Wang, Y. Liu and H. Ling(2021) Integrated impacts of tree planting and aspect ratios on thermal environment in street canyons by scaled outdoor experiments. Science of The Total Environment 764: 142920.
  23. Coutts, A. M., E. C. White, N. J. Tapper, J. Beringer and S. J. Livesley(2016) Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theoretical and Applied Climatology 124: 55-68. https://doi.org/10.1007/s00704-015-1409-y
  24. Helletsgruber, C., S. Gillner, A. Gulyas, R. R. Junker, E. Tanacs and A. Hof(2020) Identifying tree traits for cooling urban heat islands-a cross-city empirical analysis. Forests 11(10): 1064.
  25. Hami, A., B. Abdi, D. Zarehaghi and S. B. Maulan(2019) Assessing the thermal comfort effects of green spaces: A systematic review of methods, parameters, and plants' attributes. Sustainable Cities and Society 49: 101634.
  26. Han, D., T. Zhang, Y. Qin, Y. Tan and J. Liu(2022) A comparative review on the mitigation strategies of urban heat island (UHI): A pathway for sustainable urban development. Climate and Development: 1-25.
  27. Huang, X., J. Song, C. Wang, T. F. M. Chui and P. W. Chan(2021) The synergistic effect of urban heat and moisture islands in a compact high-rise city. Building and Environment 205: 108274.
  28. Jamei, E., P. Rajagopalan, M. Seyedmahmoudian and Y. Jamei(2016) Review on the impact of urban geometry and pedestrian level greening on outdoor thermal comfort. Renewable and Sustainable Energy Reviews 54: 1002-1017. https://doi.org/10.1016/j.rser.2015.10.104
  29. Jamei, E. and P. Rajagopalan(2017) Urban development and pedestrian thermal comfort in Melbourne. Solar Energy 144: 681-698. https://doi.org/10.1016/j.solener.2017.01.023
  30. Jiang, S., X. Lee, J. Wang and K. Wang(2019) Amplified urban heat islands during heat wave periods. Journal of Geophysical Research: Atmospheres 124(14): 7797-7812. https://doi.org/10.1029/2018JD030230
  31. Johansson, E.(2006) Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Building and Environment 41(10): 1326-1338. https://doi.org/10.1016/j.buildenv.2005.05.022
  32. Karttunen, S., M. Kurppa, M. Auvinen, A. Hellsten and L. Jarvi(2020) Large-eddy simulation of the optimal street-tree layout for pedestrian-level aerosol particle concentrations-A case study from a city-boulevard. Atmospheric Environment: X 6: 100073.
  33. Kong, L., K. K. L. Lau, C. Yuan, Y. Chen, Y. Xu, C. Ren and E. Ng(2017) Regulation of outdoor thermal comfort by trees in Hong Kong. Sustainable Cities and Society 31: 12-25. https://doi.org/10.1016/j.scs.2017.01.018
  34. Krayenhoff, E. S., A. Christen, A. Martilli and T. R. Oke(2014) A multi-layer radiation model for urban neighbourhoods with trees. Boundary-Layer Meteorology 151: 139-178. https://doi.org/10.1007/s10546-013-9883-1
  35. Lachapelle, J. A., E. S. Krayenhoff, A. Middel, P. Coseo and J. Warland(2023) Maximizing the pedestrian radiative cooling benefit per street tree. Landscape and Urban Planning 230: 104608.
  36. Lai, D., W. Liu, T. Gan, K. Liu and Q. Chen(2019) A review of mitigating strategies to improve the thermal environment and thermal comfort in urban outdoor spaces. Science of the Total Environment 661: 337-353. https://doi.org/10.1016/j.scitotenv.2019.01.062
  37. Lee, H., H. Mayer and W. Kuttler(2020) Impact of the spacing between tree crowns on the mitigation of daytime heat stress for pedestrians inside EW urban street canyons under Central European conditions. Urban Forestry & Urban Greening 48: 126558.
  38. Lin, B., X. Li, Y. Zhu and Y. Qin(2008) Numerical simulation studies of the different vegetation patterns' effects on outdoor pedestrian thermal comfort. Journal of Wind Engineering and Industrial Aerodynamics 96(10-11): 1707-1718. https://doi.org/10.1016/j.jweia.2008.02.006
  39. Lin, B. S. and Y. J. Lin(2010) Cooling effect of shade trees with different characteristics in a subtropical urban park. HortScience 45(1): 83-86. https://doi.org/10.21273/HORTSCI.45.1.83
  40. Lin, B. S., Y. H. Cho and C. I. Hsieh(2021a) Study of the thermal environment of sidewalks within varied urban road structures. Urban Forestry & Urban Greening 62: 127137.
  41. Lin, P., D. Song and H. Qin(2021b) Impact of parking and greening design strategies on summertime outdoor thermal condition in old mid-rise residential estates. Urban Forestry & Urban Greening 63: 127200.
  42. Liu, Z., W. Cheng, C. Y. Jim, T. E. Morakinyo, Y. Shi and E. Ng(2021) Heat mitigation benefits of urban green and blue infrastructures: A systematic review of modeling techniques, validation and scenario simulation in ENVI-met V4. Building and Environment 200: 107939.
  43. Lobaccaro, G. and J. A. Acero(2015) Comparative analysis of green actions to improve outdoor thermal comfort inside typical urban street canyons. Urban Climate 14: 251-267. https://doi.org/10.1016/j.uclim.2015.10.002
  44. Masoudi, M., P. Y. Tan and S. C. Liew(2019) Multi-city comparison of the relationships between spatial pattern and cooling effect of urban green spaces in four major Asian cities. Ecological Indicators 98: 200-213. https://doi.org/10.1016/j.ecolind.2018.09.058
  45. Mayer, H., J. Holst, P. Dostal, F. Imbery and D. Schindler(2008) Human thermal comfort in summer within an urban street canyon in Central Europe. Meteorologische Zeitschrift 17(3): 241-250. https://doi.org/10.1127/0941-2948/2008/0285
  46. Morakinyo, T. E. and Y. F. Lam(2016) Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon's micro-climate and thermal comfort. Building and Environment 103: 262-275. https://doi.org/10.1016/j.buildenv.2016.04.025
  47. Morakinyo, T. E., L. Kong, K. K. L. Lau, C. Yuan and E. Ng(2017) A study on the impact of shadow-cast and tree species on in-canyon and neighborhood's thermal comfort. Building and Environment 115: 1-17. https://doi.org/10.1016/j.buildenv.2017.01.005
  48. Morakinyo, T. E., K. K. L. Lau, C. Ren and E. Ng(2018) Performance of Hong Kong's common trees species for outdoor temperature regulation, thermal comfort and energy saving. Building and Environment 137: 157-170. https://doi.org/10.1016/j.buildenv.2018.04.012
  49. Morakinyo, T. E., W. Ouyang, K. K. L. Lau, C. Ren and E. Ng(2020) Right tree, right place (urban canyon): Tree species selection approach for optimum urban heat mitigation-development and evaluation. Science of the Total Environment 719: 137461.
  50. Norton, B. A., A. M. Coutts, S. J. Livesley, R. J. Harris, A. M. Hunter and N. S. Williams(2015) Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning 134: 127-138. https://doi.org/10.1016/j.landurbplan.2014.10.018
  51. Oke, T. R. and H. A. Cleugh(1987) Urban heat storage derived as energy balance residuals. Boundary-Layer Meteorology 39: 233-245. https://doi.org/10.1007/BF00116120
  52. Park, C. Y., D. K. Lee, E. S. Krayenhoff, H. K. Heo, J. H. Hyun, K. Oh and T. Y. Park(2019) Variations in pedestrian mean radiant temperature based on the spacing and size of street trees. Sustainable Cities and Society 48: 101521.
  53. Park, M., A. Hagishima, J. Tanimoto and K. I. Narita(2012) Effect of urban vegetation on outdoor thermal environment: Field measurement at a scale model site. Building and Environment 56: 38-46. https://doi.org/10.1016/j.buildenv.2012.02.015
  54. Pauleit, S.(2003) Urban street tree plantings: Identifying the key requirements. In Proceedings of the Institution of Civil Engineers-Municipal Engineer (Vol. 156, No. 1, pp. 43-50). Thomas Telford Ltd.
  55. Rahman, M. A., C. Hartmann, A. Moser-Reischl, M. F. von Strachwitz, H. Paeth, H. Pretzsch, S. Pauleit and T. Rotzer(2020a) Tree cooling effects and human thermal comfort under contrasting species and sites. Agricultural and Forest Meteorology 287: 107947.
  56. Rahman, M. A., L. M. Stratopoulos, A. Moser-Reischl, T. Zolch, K. H. Haberle, T. Rotzer, H. Pretzsch and S. Pauleit(2020b) Traits of trees for cooling urban heat islands: A meta-analysis. Building and Environment 170: 106606.
  57. Shashua-Bar, L. and M. E. Hoffman(2000) Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy and Buildings 31(3): 221-235. https://doi.org/10.1016/S0378-7788(99)00018-3
  58. Shashua-Bar, L., O. Potchter, A. Bitan, D. Boltansky and Y. Yaakov(2010) Microclimate modelling of street tree species effects within the varied urban morphology in the Mediterranean city of Tel Aviv, Israel. International Journal of Climatology. A Journal of the Royal Meteorological Society 30(1): 44-57. https://doi.org/10.1002/joc.1869
  59. Shashua-Bar, L., I. X. Tsiros and M. Hoffman(2012) Passive cooling design options to ameliorate thermal comfort in urban streets of a Mediterranean climate (Athens) under hot summer conditions. Building and Environment 57: 110-119. https://doi.org/10.1016/j.buildenv.2012.04.019
  60. Takebayashi, H., Y. Kimura and S. Kyogoku(2014) Study on the appropriate selection of urban heat island measure technologies to urban block properties. Sustainable Cities and Society 13: 217-222. https://doi.org/10.1016/j.scs.2014.01.008
  61. Taleghani, M., L. Kleerekoper, M. Tenpierik and A. Van Den Dobbelsteen(2015) Outdoor thermal comfort within five different urban forms in the Netherlands. Building and Environment 83: 65-78. https://doi.org/10.1016/j.buildenv.2014.03.014
  62. Tan, Z., K. K. L. Lau and E. Ng(2017) Planning strategies for roadside tree planting and outdoor comfort enhancement in subtropical high-density urban areas. Building and Environment 120: 93-109. https://doi.org/10.1016/j.buildenv.2017.05.017
  63. Wang, Y. and H. Akbari(2016) The effects of street tree planting on urban heat island mitigation in Montreal. Sustainable Cities and Society 27: 122-128. https://doi.org/10.1016/j.scs.2016.04.013
  64. Wu, Z. and L. Chen(2017) Optimizing the spatial arrangement of trees in residential neighborhoods for better cooling effects: Integrating modeling with in-situ measurements. Landscape and Urban Planning 167: 463-472. https://doi.org/10.1016/j.landurbplan.2017.07.015
  65. Wu, Z., F. Kong, Y. Wang, R. Sun and L. Chen(2016) The impact of greenspace on thermal comfort in a residential quarter of Beijing, China. International Journal of Environmental Research and Public Health 13(12): 1217.
  66. Zardo, L., D. Geneletti, M. Perez-Soba and M. Van Eupen(2017) Estimating the cooling capacity of green infrastructures to support urban planning. Ecosystem Services 26: 225-235. https://doi.org/10.1016/j.ecoser.2017.06.016
  67. Zheng, B., K. Bernard BEDRA, J. Zheng and G. Wang(2018) Combination of tree configuration with street configuration for thermal comfort optimization under extreme summer conditions in the urban center of Shantou City, China. Sustainability 10(11): 4192.
  68. Zolch, T., J. Maderspacher, C. Wamsler and S. Pauleit(2016) Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban Forestry & Urban Greening 20: 305-316.
  69. Zolch, T., M. A. Rahman, E. Pfleiderer, G. Wagner and S. Pauleit(2019) Designing public squares with green infrastructure to optimize human thermal comfort. Building and Environment 149: 640-654. https://doi.org/10.1016/j.buildenv.2018.12.051