DOI QR코드

DOI QR Code

Membrane Based Removal of Antibiotics from Wastewater: A Review

폐수중 항생제의 막기반 제거에 관한 연구: 검토

  • Ryoo Wanki (Bio-Convergence, Integrated Science and Engineering Division, Underwood International College, Yonsei University) ;
  • Rajkumar Patel (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
  • 류완키 (연세대학교 언더우드국제대학 융합과학공학부 바이오융합전공) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)
  • Received : 2023.12.23
  • Accepted : 2024.03.18
  • Published : 2024.04.30

Abstract

Antibiotics is one of the emerging pollutants found in various water sources as well as wastewater due to its excessive use. Different techniques are available for treating antibiotics contaminants in water such as advanced oxidation process and biological treatment etc. These two processes are ineffective, and the generation of side products makes this process more complicated. Membrane technology is another alternative for the removal of contaminants. To improve the removal of antibiotics and their resistant gene, membrane bioreactors are modified with NaClO and carbon materials. The generation of abundant reactive species is active against the antibiotic's resistant genes.

항생제는 과도한 사용으로 인해 폐수뿐만 아니라 다양한 수원에서 발견되는 새로운 오염 물질 중 하나입니다. 수중 항생제 오염 물질을 처리하기 위한 고도 산화 공정, 생물학적 처리 등 다양한 기술이 있습니다. 이 두 가지 공정은 비효율적이며, 부산물의 생성은 이 공정을 더욱 복잡하게 만듭니다. 오염 물질을 제거하기 위한 또 다른 대안으로 막 기술이 있습니다. 항생제와 내성 유전자의 제거를 개선하기 위해 막 생물 반응기는 NaClO와 탄소 물질로 변형됩니다. 풍부한 반응성 종의 생성은 항생제의 내성 유전자에 대해 활성입니다.

Keywords

References

  1. R. Kahkahni and R. Patel, Photocatalytic membrane for degradation of antibiotics: A review, Membr. J., 32, 304 (2022).
  2. Y. Kwak and R. Patel, Ceramic based nanofiltration membrane for wastewater treatment: A Review, Membr. J., 32, 390 (2022).
  3. M. Zahoor, M. Wahab, S. M. Salman, A. Sohail, E. A. Ali, and R. Ullah, Removal of doxycycline from water using dalbergia sissoo waste biomass based activated carbon and magnetic oxide/activated bioinorganic nanocomposite in batch adsorption and adsorption/membrane hybrid processes, Bioinorg. Chem. Appl., 2022, 2694487 (2022).
  4. N. P. Simelane, J. K. O. Asante, P. P. Ndibewu, A. S. Mramba, and L. L. Sibali, Biopolymer composites for removal of toxic organic compounds in pharmaceutical effluents - A review, Carbohydr. Polym. Technol. Appl., 4, 100239 (2022).
  5. L. Jia, W. Wu, Q. Zhou, Y. Li, and W. Wu, New insights on the synergetic removal of nutrients and sulfonamides in solid carbon/manganese ore supported denitrification system: Water quality, microbial community and antibiotic resistance genes, Chem. Eng. J., 446, 136992 (2022).
  6. H. Hou, Z. Mengting, L. Duan, Y. Zhao, Z. Zhang, M. Yao, B. Zhou, H. Zhang, and S. W. Hermanowicz, Removal performance and biodegradation mechanism of sulfonamides antibiotic contained wastewater by IFAS-MBR bioreactor, J. Mol. Liq., 367, 120572 (2022).
  7. V. Nayak, J. Cuhorka, and P. Mikulasek, Separation of drugs by commercial nanofiltration membranes and their modelling, Membranes, 12, 528 (2022).
  8. R. Vijitha, N. S. Reddy, K. Nagaraja, T. J. Sudha Vani, M. M. Hanafiah, K. Venkateswarlu, S. K. Lakkaboyana, K. S. V. Krishna Rao, and K. M. Rao, Fabrication of polyelectrolyte membranes of pectin graft-copolymers with PVA and their composites with phosphomolybdic acid for drug delivery, toxic metal ion removal, and fuel cell applications, Membranes, 11, 792 (2021).
  9. R. Vijitha, K. Nagaraja, M. M. Hanafiah, K. M. Rao, K. Venkateswarlu, S. K. Lakkaboyana, K. S. V. Krishna Rao, Fabrication of eco-friendly polyelectrolyte membranes based on sulfonate grafted sodium alginate for drug delivery, toxic metal ion removal and fuel cell applications, Polymers, 13, 3293 (2021).
  10. H. Gao, Y. Wang, M. A. Afolabi, D. Xiao, Y. Chen, Incorporation of cellulose nanocrystals into graphene oxide membranes for efficient antibiotic removal at high nutrient recovery, ACS Appl. Mater. Interfaces., 13, 14102 (2021).
  11. M. D. Raicopol, C. Andronescu, S. I. Voicu, E. Vasile, and A. M. Pandele, Cellulose acetate/layered double hydroxide adsorptive membranes for efficient removal of pharmaceutical environmental contaminants, Carbohydr. Polym., 214, 204 (2019).
  12. X. Ni, X. Hou, D. Ma, Q. Li, L. Li, B. Gao, and Y. Wang, Simultaneous removal of antibiotics and antibiotic resistant genes using a CeO2@CNT electrochemical membrane-NaClO system, Chemosphere, 338, 139457 (2023).
  13. J. Park, N. Yamashita, C. Park, T. Shimono, D. M. Takeuchi, and H. Tanaka, Removal characteristics of pharmaceuticals and personal care products: Comparison between membrane bioreactor and various biological treatment processes, Chemosphere, 179, 447 (2017).
  14. J. Park, N. Yamashita, and H. Tanaka, Membrane fouling control and enhanced removal of pharmaceuticals and personal care products by coagulation-MBR, Chemosphere, 197, 467 (2018).
  15. X. Shen, L. Song, L. Luo, Y. Zhang, B. Zhu, J. Liu, Z. Chen, and L. Zhang, Preparation of TiO2/C3N4 heterojunctions on carbon-fiber cloth as efficient filter-membrane-shaped photocatalyst for removing various pollutants from the flowing wastewater, J. Colloid Interface Sci., 532, 798 (2018).
  16. Z. Shi, Y. Zhang, T. Liu, W. Cao, L. Zhang, M. Li, and Z. Chen, Synthesis of BiOBr/Ag3PO4 heterojunctions on carbon-fiber cloth as filter-membrane- shaped photocatalyst for treating the flowing antibiotic wastewater, J. Colloid Interface Sci., 575, 183 (2020).
  17. T. H. Le, C. Ng, N. H. Tran, H. Chen, and K. Y. H. Gin, Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems, Water Res., 145, 498 (2018).
  18. R. De Sotto, X. J. Lee, and S. Bae, Acute exposure effects of tetracycline, ampicillin, sulfamethoxazole, and their mixture on nutrient removal and microbial communities in the activated sludge of air-scouring and reciprocation membrane bioreactors, J. Environ. Manage., 304, 114165 (2022).
  19. J. Guo, M. Huang, L. Meng, N. Jiang, S. Zheng, M. Shao, and X. Luo, Synergistic impacts of Cu2+ on simultaneous removal of tetracycline and tetracycline resistance genes by PSF/TPU/UiO forward osmosis membrane, Environ. Res., 195, 110791 (2021).
  20. Y. C. Lin, G. L. Zhuang, P. F. Tasi, and H. H. Tseng, Removal of protein, histological dye and tetracycline from simulated bioindustrial wastewater with a dual pore size PPSU membrane, J. Hazard. Mater., 431, 128525 (2022).
  21. M. Liu, Z. Zhao, and W. Yu, Comparative investigation on removal characteristics of tetracycline from water by modified wood membranes with different channel walls, Sci. Total Environ., 775, 145617 (2021).
  22. J. A. Park, A. Nam, J. H. Kim, S. T. Yun, J. W. Choi, and S. H. Lee, Blend-electrospun graphene oxide/Poly(vinylidene fluoride) nanofibrous membranes with high flux, tetracycline removal and antifouling properties, Chemosphere, 207, 347 (2018).