DOI QR코드

DOI QR Code

Progress in Nanofiltration-Based Capacitive Deionization

나노여과 기반 용량성 탈이온화의 진전

  • Jeong Hwan Shim (Nano Science and Engineering, Underwood International College, Yonsei University) ;
  • Rajkumar Patel (Energy and Environmental Science and Engineering, Integrated Science and Engineering Division, Underwood International College, Yonsei University)
  • 심정환 (연세대학교 언더우드국제대학 융합과학공학부 나노과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드학부 융합과학공학부 에너지환경융합전공)
  • Received : 2023.12.10
  • Accepted : 2024.02.21
  • Published : 2024.04.30

Abstract

Recent studies explore a wide array of desalination and water treatment methods, encompassing membrane processes such as reverse osmosis (RO), nanofiltration (NF), and electrodialysis (ED) to advanced capacitive deionization (CDI) and its membrane variant (MCDI). Comparative analyses reveal ED's cost-effectiveness in low-salinity scenarios, while hybrid systems (NF-MCDI, RO-NF-MCDI) show improved salt removal and energy efficiency. Novel ion separation methods (NF-CDI, NF-FCDI) offer enhanced efficacy and energy savings. These studies also highlight the efficiency of these methods in treating complex wastewater specific to various industries. Environmental impact assessments emphasize the need for sustainability in system selection. Additionally, the integration of microfabricated sensors into membranes allows real-time monitoring, advancing technology development. These studies underscore the variety and promise of emerging desalination and water treatment technologies. They provide valuable insights for enhancing efficiency, minimizing energy usage, tackling industry-specific issues, and innovating to surpass conventional method limitations. The future of sustainable water treatment appears bright, with continual advancements focused on improving efficiency, minimizing environmental impact, and ensuring adaptability across diverse applications.

최근 연구는 역삼투압(RO), 나노여과(NF) 및 전기투석(ED)과 같은 막 공정에서 고급 용량성 탈이온화(CDI) 및 막 변형(MCDI)을 포함하는 광범위한 담수화 및 수처리 방법을 탐구합니다. 비교 분석은 저염도 시나리오에서 ED의 비용 효율성을 보여주는 반면 하이브리드 시스템(NF-MCDI, RO-NF-MCDI)은 향상된 염 제거 및 에너지 효율성을 보여줍니다. 새로운 이온 분리 방법(NF-CDI, NF-FCDI)은 향상된 효율성과 에너지 절감을 제공합니다. 이러한 연구는 또한 다양한 산업에 특정한 복잡한 폐수를 처리하는 데 있어 이러한 방법의 효율성을 강조합니다. 환경 영향 평가는 시스템 선택의 지속 가능성의 필요성을 강조합니다. 또한 마이크로 제작된 센서를 멤브레인에 통합하면 실시간 모니터링이 가능하여 기술 개발이 진전됩니다. 이러한 연구는 새로운 담수화 및 수처리 기술의 다양성과 가능성을 강조합니다. 이는 효율성 향상, 에너지 사용 최소화, 산업별 문제 해결 및 기존 방법 한계를 능가하는 혁신을 위한 귀중한 통찰력을 제공합니다. 다양한 응용 분야에서 효율성 향상, 환경 영향 최소화 및 적응성 보장에 초점을 맞춘 지속적인 발전으로 지속 가능한 수처리의 미래는 밝습니다.

Keywords

References

  1. S. Park and R. Patel, "Recent progress in qantum dots containing thin film composite membrane for water purification", Membr. J., 30, 293 (2020).
  2. S. Park and R. Patel, "Recent progress in conductive polymer-based membranes", Membr. J., 31, 101 (2021).
  3. K. P. Lee, T. C. Arnot, and D. Mattia, "A review of reverse osmosis membrane materials for desalination-Development to date and future potential", J. Membr. Sci., 370, 1 (2011).
  4. P. S. Goh, T. Matsuura, A. F. Ismail, and N. Hilal, "Recent trends in membranes and membrane processes for desalination", Desalination, 391, 43 (2016).
  5. N. Ghaffour, T. M. Missimer, and G. L. Amy, "Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability", Desalination, 309, 197 (2013).
  6. G. Filippini, M. A. Al-Obaidi, F. Manenti, and I. M. Mujtaba, "Performance analysis of hybrid system of multi effect distillation and reverse osmosis for seawater desalination via modelling and simulation", Desalination, 448, 21 (2018).
  7. J. Choi, P. Dorji, H. K. Shon, and S. Hong, "Applications of capacitive deionization: Desalination, softening, selective removal, and energy efficiency", Desalination, 449, 118 (2019).
  8. P. Dorji, J. Choi, D. I. Kim, S. Phuntsho, S. Hong, and H. K. Shon, "Membrane capacitive deionisation as an alternative to the 2nd pass for seawater reverse osmosis desalination plant for bromide removal", Desalination, 433, 113 (2018).
  9. S. Choi, B. Chang, J. H. Kang, M. S. Diallo, and J. W. Choi, "Energy-efficient hybrid FCDI-NF desalination process with tunable salt rejection and high water recovery", J. Membr. Sci., 541, 580 (2017).
  10. C. M. Tun and A. M. Groth, "Sustainable integrated membrane contactor process for water reclamation, sodium sulfate salt and energy recovery from industrial effluent", Desalination, 283, 187 (2011).
  11. A. Subramani and J. G. Jacangelo, "Emerging desalination technologies for water treatment: A critical review", Water Res., 75, 164 (2015).
  12. M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, and V. Presser, "Water desalination via capacitive deionization: what is it and what can we expect from it?", Energy Environ. Sci., 8, 2296 (2015).
  13. J. Oladunni, J. H. Zain, A. Hai, F. Banat, G. Bharath, and E. Alhseinat, "A comprehensive review on recently developed carbon based nanocomposites for capacitive deionization: From theory to practice", Sep. Purif. Technol., 207, 291 (2018).
  14. K. Mitko, A. R. Rosinski, and M. Turek, "Energy consumption in membrane capacitive deionization and electrodialysis of low salinity water", Desalin. Water Treat., 214, 294-301 (2021). https://doi.org/10.5004/dwt.2021.26701
  15. M. Biro and D. B. Voncina, "Innovative approach to treating waste waters by a membrane capacitive deionisation system", Chem. Pap., 70, 576 (2016).
  16. K. Jeong, N. Yoon, S. Park, M. Son, J. Lee, J. Park, and K. H. Cho, "Optimization of a nanofiltration and membrane capacitive deionization (NF-MCDI) hybrid system: Experimental and modeling studies", Desalination, 493, 114658 (2020).
  17. J. Lee, S. Lee, Y. Choi, and S. Lee, "Treatment of semiconductor wastewater containing tetramethylammonium hydroxide (TMAH) using nanofiltration, reverse osmosis, and membrane capacitive deionization", Membr., 13, 336 (2023).
  18. S. Mao, L. Chen, Y. Zhang, Z. Li, Z. Ni, Z. Sun, and R. Zhao, "Fractionation of mono- and divalent ions by capacitive deionization with nanofiltration membrane", J. Colloid Interface Sci., 544, 321 (2019).
  19. P. Nativ, O. Lahav, and Y. Gendel, "Separation of divalent and monovalent ions using flow-electrode capacitive deionization with nanofiltration membranes", Desalination, 425, 123 (2018).
  20. H. Rosentreter, M. Walther, and A. Lerch, "Partial desalination of saline groundwater: Comparison of nanofiltration, reverse osmosis and membrane capacitive deionisation", Membr. 11, 1 (2021).
  21. Y. Zhang, X. Bu, X. Dong, Y. Wang, and Z. Chen, "Nanofiltration combined with membrane capacitive deionization for efficient classification and recovery salts from simulated coal chemical industrial wastewater", Sep. Purif. Technol., 322, 124156 (2023).
  22. A. Y. Cetinkaya and L. Bilgili, "Removal of Cu(II) ions from aqueous solutions using membrane system and membrane capacitive deionization (MCDI) technology", Environ. Monit. Assess., 193, 460 (2021).
  23. Z. Zhang, V. M. Bright, and A. R. Greenberg, "Use of capacitive microsensors and ultrasonic time-domain reflectometry for in-situ quantification of concentration polarization and membrane fouling in pressure-driven membrane filtration", Sens. Actuators B Chem., 117, 323 (2006).