DOI QR코드

DOI QR Code

Study on seismic response of a seismic isolation liquid storage tank

  • Xiang Li (College of mechanical science and engineering, Northeast Petroleum University) ;
  • Jiangang Sun (College of Civil Engineering, Dalian Minzu University) ;
  • Lei Xu (College of Civil Engineering, Dalian Minzu University) ;
  • Shujin Zhang (College of mechanical science and engineering, Northeast Petroleum University) ;
  • Lifu Cui (College of Civil Engineering, Dalian Minzu University) ;
  • Qinggao Zhang (College of Civil Engineering, Dalian Minzu University) ;
  • Lijie Zhu (College of Civil Engineering, Dalian Minzu University)
  • Received : 2023.03.29
  • Accepted : 2024.03.12
  • Published : 2024.05.25

Abstract

This paper presents a new seismic isolation design for liquid storage tank (LST). The seismic isolation system includes: LST, flexible membrane, sand mat and rolling seismic isolation devices. Based on the mechanical equilibrium theory, the symmetric concave rolling restoring force model of the isolation device is derived. Based on the elasticity theory and restoring force model of the seismic isolation, a simplified mechanical model of LST with the new seismic isolation is established. The rationality of the seismic isolation design of LST is explored. Meanwhile, the seismic response of the new seismic isolation LST is investigated by numerical simulation. The results show that the new seismic isolation tank can effectively reduce the seismic response, especially the control of base shear and overturning moment, which greatly reduces the risk of seismic damage. The seismic reduction rate of the new seismic isolation storage tanks in Class I, II, and III sites is better than that in Class IV sites. Moreover, the seismic isolation device can effectively control the ground vibration response of storage tanks with different liquid heights. The new seismic isolation LST design provides better isolation for slender LSTs than for broad LSTs.

Keywords

Acknowledgement

Financial support was provided by the National Natural Science Foundation of China (No. 51878124). In addition, Liaoning Provincial Natural Science Fund Guidance Plan (20180550073, 2015020620) through its funding of scientific research projects is gratefully acknowledged.

References

  1. Batikha, M., Chen, J.F., Rotter, J.M. and Teng, J.G. (2009), "Strengthening metallic cylindrical sells against elephant's foot buckling with FRP", Thin Wall. Struct., 47(10), 1078-1091. https://doi.org/10.1016/j.tws.2008.10.012.
  2. Butenweg, C. and Holtschoppen, B. (2014), "Seismic design of industrial facilities in Germany", International Conference on Seismic Design of Industrial Facilities 2013, Aachen, Germany, September.
  3. Chalhoub, M.S. and Kelly, J.M. (1988), "Theoretical and experimental studies of cylindrical water tanks in base isolated structures", TA658.44 .R46 1988/07; Earthquake Engineering Research Center, University of California at Berkeley, Berkeley, CA, USA.
  4. Chen, J.F., Rotter, J.M. and Teng, J.G. (2006), "A simple remedy for elephant's foot buckling in cylindrical silos and tanks", Adv. Struct. Eng., 9(3), 409-420. https://doi.org/10.1260/136943306777641968.
  5. Compagnoni, M.E., Curadelli, O. and Ambrosini, D. (2018), "Experimental study on the seismic response of liquid storage tanks with sliding concave bearings", J. Loss Prev. Process Ind., 55, 1-9. https://doi.org/10.1016/j.jlp.2018.05.009.
  6. Colombo, J.I. and Almazan, J.L. (2017), "Experimental investigation on the seismic isolation for a legged wine storage tank", J. Constr. Steel Res., 133(6), 167-180. https://doi.org/10.1016/j.jcsr.2017.02.013.
  7. Foti, D. (2019), "Rolling devices for seismic isolation of lightweight structures and equipment. Design and realization of a prototype", Struct. Control Health Monit., 26(3), e2311. https://doi.org/10.1002/stc.2311.
  8. Furinghetti, M., Mansour, S. and Marra, M. (2024), "Shaking table tests of a full-scale base-isolated flat-bottom steel silo equipped with curved surface slider bearings", Soil Dyn. Earthq. Eng., 176, 108321. https://doi.org/10.1016/j.soildyn.2023.108321.
  9. GB 18306-2015 (2015), Seismic Ground Motion Parameters Zonation Map of China, China Standard Press, Beijing, China.
  10. GB 50011-2010 (2010), Code for Seismic Design of Buildings, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Beijing, China.
  11. Guler, E. and Alhan, C. (2021), "Performance limits of base-isolated liquid storage tanks with/without supplemental dampers under near-fault earthquakes", Struct., 33, 355-367. https://doi.org/10.1016/j.istruc.2021.04.023.
  12. Hanson, R.D. (1977), Behavior of Liquid Storage Tanks, the Great Alaska Earthquake of 1964, National Academy of Sciences, Washington, D.C., USA.
  13. Housner, G.W. (1963), "The dynamic behavior of water tanks", Bull. Seismol. Soc. Am., 53(2), 381-387. https://doi.org/10.1785/BSSA0530020381.
  14. Hernandez-Hernandez, D., Larkin, T. and Chouw, N. (2021), "Shake table investigation of nonlinear soil-structure-fluid interaction of a thin-walled storage tank under earthquake load", Thin Wall. Struct., 167(10), 1-23. https://doi.org/10.1016/j.tws.2021.108143.
  15. Reyes, S.I., Almazan, J.L., Vassiliou, M.F., Tapia, N.F., Colombo, J.I. and de la Llera, J.C. (2022), "Full-scale shaking table test and numerical modeling of a 3000-liter legged storage tank isolated with a vertical rocking isolation system", Earthq. Eng. Struct. Dyn., 51(6), 1563-1585. https://doi.org/10.1002/eqe.3628.
  16. Krausmann, E., Cruz, A. and Affeltranger, B. (2010), "The impact of the 12 May 2008 Wenchuan earthquake on industrial facilities", J. Loss Prev. Process. Ind., 23(2), 242-248. https://doi.org/10.1016/j.jlp.2009.10.004.
  17. Koh, H.M., Kim, J.K. and Park, J.H. (1998), "Fluid-structure interaction analysis of 3-D rectangular tanks by a variationally coupled BEM-FEM and comparison with test results", Earthq. Eng. Struct. Dyn., 27(2), 109-124. https://doi.org/10.1002/(SICI)1096-9845(199802)27:2<109::AID-EQE714>3.0.CO;2-M.
  18. Krishnamoorthy, A. (2021), "Finite element method of analysis for liquid storage tank isolated with friction pendulum system", J. Earthq. Eng., 25(1), 82-92. https://doi.org/10.1080/13632469.2018.1498815.
  19. Li, X., Sun, J.G. and Zhang, S.J. (2021), "Experimental study on seismic performance of a new fabricated structure based on recycled concrete", J. Vib. Eng., 34(5), 899-910. https://doi.org/10.16385/j.cnki.issn.1004-4523.2021.05.003.
  20. Lindell, M.K. and Perry, R.W. (1997), "Hazardous materials releases in the Northridge earthquake: implications for seismic risk assessment", Risk Anal., 17, 147-156. https://doi.org/10.1111/j.1539-6924.1997.tb00854.x.
  21. Lyu, Y., Sun, J.G., Li, Z.H., Teng, J., Cui, L.F. and Cheng, L.H. (2022), "Study on mechanical model and shaking table test of spherical tank rolling isolation", Earthq. Eng. Struct. Dyn., 51, 1895-1917. https://doi.org/10.1002/eqe.3644.
  22. Lyu, Y., Sun, J.G., Sun, Z.G., Cui, L.F. and Wang, Z. (2020), "Simplified mechanical model for seismic design of horizontal storage tank considering soil-tank-liquid interaction", Ocean Eng.. 198, 106953. https://doi.org/10.1016/j.oceaneng.2020.106953.
  23. Malhotra, P.K. and Veletsos, A.S. (1995), "Seismic response of unanchored and partially anchored liquid-storage tanks", 114132044; Electric Power Research Institute (EPRI), Palo Alto, CA, USA.
  24. Manos, G.C. and Clough, R.W. (1985), "Tank damage during the May 1983 Coalinga earthquake", Earthq. Eng. Struct. Dyn., 13(4), 449-466. https://doi.org/10.1002/eqe.4290130403.
  25. Mansour, S., Pieraccini, L., Palermo, M., Foti, D., Gasparini, G., Trombetti, T. and Silvestri, S. (2022), "Comprehensive review on the dynamic and seismic behavior of flat-bottom cylindrical silos filled with granular material", Front. Built Environ., 7, 805014. https://doi.org/10.3389/fbuil.2021.805014.
  26. Maekawa, A., Shimizu, Y., Suzuki, M. and Fujita, K. (2010), "Vibration test of a 1/10 reduced scale model of cylindrical water storage tank", J. Press. Vessel Technol., 132(5), 051801. https://doi.org/10.1115/1.4001915.
  27. Mansour, S., Silvestri, S. and Sadowski, A.J. (2022), "The 'miniature silo' test: A simple experimental setup to estimate the effective friction coefficient between the granular solid and a horizontally-corrugated cylindrical metal silo wall", Powder Technol., 399, 117212. https://doi.org/10.1016/j.powtec.2022.117212.
  28. Moslemi, M. and Kianoush, M.R. (2016), "Application of seismic isolation technique to partially filled conical elevated tanks", Eng. Struct., 127, 663-675. https://doi.org/10.1016/j.engstruct.2016.09.009.
  29. Rawat, A., Matsagar, V.A. and Nagpal, A.K. (2019), "Numerical study of base-isolated cylindrical liquid storage tanks using coupled acoustic-structural approach", Soil Dyn. Earthq. Eng., 119, 196-219. https://doi.org/10.1016/j.soildyn.2019.01.005.
  30. Shekari, M., Khaji, R.N. and Ahmadi, M.T. (2009), "A coupled BE-FE study for evaluation of seismically isolated cylindrical liquid storage tanks considering fluid-structure interaction", J. luid. Struct., 25, 567-585. https://doi.org/10.1016/j.jfluidstructs.2008.07.005.
  31. Shrimali, M.K. and Jangid, R.S. (2002), "Non-linear seismic response of base-isolated liquid storage tanks to bi-directional excitation", Nucl. Eng. Des., 217(1-2), 1-20. https://doi.org/10.1016/S0029-5493(02)00134-6.
  32. Shrimali, M.K. and Jangid, R.S. (2002), "Seismic response of liquid storage tanks isolated by sliding bearings", Eng. Struct., 24, 909-921. https://doi.org/10.1016/S0141-0296(02)00009-3.
  33. Shrimali, M.K. and Jangid, R.S. (2004), "Seismic analysis of base-isolated liquid storage tanks", J. Sound Vib., 275, 59-75. https://doi.org/10.1016/S0022-460X(03)00749-1.
  34. Silvestri, S., Mansour, S., Marra, M., Distl, J., Furinghetti, M., Lanese, I., ... and Weber, F. (2022), "Shaking table tests of a full-scale flat-bottom manufactured steel silo filled with wheat: Main results on the fixed-base configuration", Earthq. Eng. Struct. Dyn., 51, 169-190. https://doi.org/10.1002/eqe.3561.
  35. Sorace, S. and Terenzi, G. (2008), "Analysis and demonstrative application of a base isolation supplemental damping technology", Earthq. Spectra, 24(3), 775-793. https://doi.org/10.1193/1.294644.
  36. Sun, J.G., Hao, J.F. and Liu, Y. (2016), "Simple mechanical model for vibration isolation analysis of a vertical storage tanks considering swinging effect", J. Vib. Shock, 35(11), 20-27. https://doi.org/10.13465/j.cnki.jvs.2016.11.004
  37. Tsipianitis, A. and Tsompanakis, Y. (2018), "Seismic vulnerability assessment of liquid storage tanks isolated by sliding-based systems", Adv. Civil Eng., 8, 5304245. https://doi.org/10.1155/2018/5304245.
  38. Tsipianitis, A. and Tsompanakis, Y. (2019), "Impact of damping modeling on the seismic response of base-isolated liquid storage tanks", Soil Dyn. Earthq. Eng., 121, 281-292. https://doi.org/10.1016/j.soildyn.2019.03.013.
  39. Tsipianitis, A. and Tsompanakis, Y. (2021), "Optimizing the seismic response of base-isolated liquid storage tanks using swarm intelligence algorithms", Comput. Struct., 243, 106407. https://doi.org/10.1016/j.compstruc.2020.106407.
  40. Tsipianitis, A. and Tsompanakis, Y. (2022), "Improving the seismic performance of base-isolated liquid storage tanks with supplemental linear viscous dampers", Earthq. Eng. Eng. Vib., 21, 269-282. https://doi.org/10.1007/s11803-022-2083-6.
  41. Vathi, M. and Karamanos, S.A. (2012), "Effects of base uplifting on the seismic response of unanchored liquid storage tanks", ASME 2012 Pressure Vessels and Piping Conference, Toronto, Ontario, Canada, July.
  42. Vimal, P.P.A., Regin, J.D.J., Jinu, G.T.R. and Chettiar, C.G. (2020), "Experimental investigation on elevated water tanks with base isolation - response spectrum approach", J. Theoret. Appl. Mech., 58(4), 885-899. https://doi.org/10.15632/jtampl/125617.
  43. Zhang, R.F., Weng, D.G. and Ren, X.S. (2011), "Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system", Earthq. Eng. Eng. Vib., 10(2), 253-262. https://doi.org/10.1007/s11803-011-0063-3.
  44. Zhao, M. and Zhou, J. (2018), "Review of seismic studies of liquid storage tanks", Struct. Eng. Mech., 65(5), 557-572. https://doi.org/10.12989/sem.2018.65.5.557.
  45. Zhao, Y.R., Zhao, L., Zhang, A.J. and Cheng, X.S. (2015), "FSI resonance responseof liquid-storage structures made of rubber-isolated rectangular reinforced concrete", Electr. J. Geotech. Eng., 20(7), 1809-1824.