DOI QR코드

DOI QR Code

Experimental Investigation on the Freezing Condition of Printed Circuit Heat Exchanger for Cryogenic Liquid Hydrogen Vaporizer

극저온 액체수소 기화기용 인쇄기판 열교환기의 동결 조건에 관한 실험적 연구

  • WOOKYOUNG KIM (Heat Pump Research Center, Research Institute of Carbon-neutral Energy Machinery, Korea Institute of Machinery & Materials) ;
  • BOKYEM KIM (Department of Mechanical Engineering, University of Science and Technology) ;
  • SANGHO SOHN (Heat Pump Research Center, Research Institute of Carbon-neutral Energy Machinery, Korea Institute of Machinery & Materials) ;
  • KONG HOON LEE (Heat Pump Research Center, Research Institute of Carbon-neutral Energy Machinery, Korea Institute of Machinery & Materials) ;
  • JUNGCHUL KIM (Heat Pump Research Center, Research Institute of Carbon-neutral Energy Machinery, Korea Institute of Machinery & Materials)
  • 김우경 (한국기계연구원 탄소중립기계연구소 히트펌프연구센터) ;
  • 김보겸 (과학기술연합대학원대학교 융합기계시스템전공) ;
  • 손상호 (한국기계연구원 탄소중립기계연구소 히트펌프연구센터) ;
  • 이공훈 (한국기계연구원 탄소중립기계연구소 히트펌프연구센터) ;
  • 김정철 (한국기계연구원 탄소중립기계연구소 히트펌프연구센터)
  • Received : 2024.03.25
  • Accepted : 2024.04.24
  • Published : 2024.04.30

Abstract

The purpose of this study is to investigate the freezing phenomena in printed circuit heat exchanger (PCHE) for cryogenic liquid hydrogen vaporizer. Local freezing phenomena in hot channels should be avoided in designing PCHE for cryogenic liquid hydrogen vaporizer. Hence, the flow and thermal characteristics of PCHE is experimentally investigated to figure out the conditions under when freezing occurs. To conduct lab-scale PCHE experiment, liquid nitrogen is used as a working fluid in cold channels instead of using liquid hydrogen. Glycol water is used as a working fluid in hot channels. Based on the experimental data, ratio between mass flow rates of cold channels and that of hot channels is proposed as contour map to avoid the freezing phenomena in PCHE.

Keywords

Acknowledgement

본 연구는 2023년 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원(1415181949) 한국기계연구원 기본 사업인 '액체수소 공급시스템 핵심 기자재 개발(NK237B)'의 지원으로 연구한 결과물입니다.

References

  1. O. Wilhelmsen, D. Berstad, A. Aasen, P. Neksa, and G. Skaugen, "Reducing the exergy destruction in the cryogenic heat exchangers of hydrogen liquefaction processes", International Journal of Hydrogen Energy , Vol. 43, No. 10, 2018, pp. 5033-5047, doi: https://doi.org/10.1016/j.ijhydene.2018.01.094.
  2. T. Kim, B. I. Choi, Y. S. Han, and K. H. Do, "Thermodynamic analysis of a hydrogen liquefaction process for a hydrogen liquefaction pilot plant with a small capacity", Journal of Hydrogen and New Energy, Vol. 31, No. 1, 2020, pp. 41-48, doi: https://doi.org/10.7316/KHNES.2020.31.1.41.
  3. J. W. Leachman, B. Jacobson, S. Penoncello, and E. Lemmon, "Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen", Journal of Physical and Chemical Reference Data, Vol. 38, No. 3, 2009, pp.721-748. Retrieved from https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=832374. https://doi.org/10.1063/1.3160306
  4. P. J. Donaubauer, U. Cardella, L. Decker, and H. Klein, "Kinetics and heat exchanger design for catalytic ortho-para hydrogen conversion during liquefaction", Chemical Engineering & Technology, Vol. 42, No. 3, 2019, pp. 669-679, doi: https://doi.org/10.1002/ceat.201800345.
  5. K. Nikitin, Y. Kato, and L. Ngo, "Printed circuit heat exchanger thermal-hydraulic performance in supercritical CO2 experimental loop", International Journal of Refrigeration, Vol. 29, No. 5, 2006, pp. 807-814, doi: https://doi.org/10.1016/j.ijrefrig.2005.11.005.
  6. I. H. Kim, H. C. No, J. I. Lee, and B. G. Jeon, "Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations", Nuclear Engineering and Design, Vol. 239, No. 11, 2009, pp. 239 9-2408, doi: https://doi.org/10.1016/j.nucengdes.2009.07.005.
  7. S. Baek, J. H. Kim, S. Jeong, and J. Jung, "Development of highly effective cryogenic printed circuit heat exchanger (PCHE) with low axial conduction", Cryogenics, Vol. 52, No. 7-9, 2012, pp. 366-374, doi: https://doi.org/10.1016/j.cryogenics.2012.03.001.
  8. S. Yang, Z. Zhao, Y. Zhang, Z. Chen, and M. Yang, "Effects of fin arrangements on thermal hydraulic performance of supercritical nitrogen in printed circuit heat exchanger", Processes, Vol. 9, No. 5, 2021, pp. 861, doi: https://doi.org/10.3390/pr9050861.
  9. J. H. Shin and S. H. Yoon, "Thermal and hydraulic performance of a printed circuit heat exchanger using two-phase nitrogen", Applied Thermal Engineering, Vol. 168, 2020, pp. 114802, doi: https://doi.org/10.1016/j.applthermaleng.2019.114802.
  10. S. Sohn and B. I. Choi, "A study on thermal design of printed circuit heat exchanger for supply of cryogenic high pressure liquid hydrogen", Journal of Hydrogen and New Energy, Vol. 32, No. 5, 2021, pp. 347-355, doi: https://doi.org/10.7316/KHNES.2021.32.5.347.
  11. S. Sohn and W. Kim, "A study on anti-icing design by conjugate heat transfer analysis in a lab-scale printed circuit heat exchanger for supply of cryogenic high pressure liquid hydrogen", Journal of Hydrogen and New Energy, Vol. 33, No. 5, 2022, pp. 541-549, doi: https://doi.org/10.7316/KHNES.2022.33.5.541.
  12. D. Kwon, L. Jin, W. S. Jung, and S Jeong, "Experimental investigation of heat transfer coefficient of mini-channel PCHE (printed circuit heat exchanger)", Cryogenics, Vol.92, 2018, pp. 41-49, doi: https://doi.org/10.1016/j.cryogenics.2018.03.011.
  13. J. W. Yoo, C. W. Nam, and S. H. Yoon, "Experimental study of propane condensation heat transfer and pressure drop in semicircular channel printed circuit heat exchanger", Intern ational Journal of Heat and Mass Transfer, Vol. 182, 2022, pp. 121939, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121939.