Acknowledgement
본 연구는 2023년 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원(1415181949) 한국기계연구원 기본 사업인 '액체수소 공급시스템 핵심 기자재 개발(NK237B)'의 지원으로 연구한 결과물입니다.
References
- O. Wilhelmsen, D. Berstad, A. Aasen, P. Neksa, and G. Skaugen, "Reducing the exergy destruction in the cryogenic heat exchangers of hydrogen liquefaction processes", International Journal of Hydrogen Energy , Vol. 43, No. 10, 2018, pp. 5033-5047, doi: https://doi.org/10.1016/j.ijhydene.2018.01.094.
- T. Kim, B. I. Choi, Y. S. Han, and K. H. Do, "Thermodynamic analysis of a hydrogen liquefaction process for a hydrogen liquefaction pilot plant with a small capacity", Journal of Hydrogen and New Energy, Vol. 31, No. 1, 2020, pp. 41-48, doi: https://doi.org/10.7316/KHNES.2020.31.1.41.
- J. W. Leachman, B. Jacobson, S. Penoncello, and E. Lemmon, "Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen", Journal of Physical and Chemical Reference Data, Vol. 38, No. 3, 2009, pp.721-748. Retrieved from https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=832374. https://doi.org/10.1063/1.3160306
- P. J. Donaubauer, U. Cardella, L. Decker, and H. Klein, "Kinetics and heat exchanger design for catalytic ortho-para hydrogen conversion during liquefaction", Chemical Engineering & Technology, Vol. 42, No. 3, 2019, pp. 669-679, doi: https://doi.org/10.1002/ceat.201800345.
- K. Nikitin, Y. Kato, and L. Ngo, "Printed circuit heat exchanger thermal-hydraulic performance in supercritical CO2 experimental loop", International Journal of Refrigeration, Vol. 29, No. 5, 2006, pp. 807-814, doi: https://doi.org/10.1016/j.ijrefrig.2005.11.005.
- I. H. Kim, H. C. No, J. I. Lee, and B. G. Jeon, "Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations", Nuclear Engineering and Design, Vol. 239, No. 11, 2009, pp. 239 9-2408, doi: https://doi.org/10.1016/j.nucengdes.2009.07.005.
- S. Baek, J. H. Kim, S. Jeong, and J. Jung, "Development of highly effective cryogenic printed circuit heat exchanger (PCHE) with low axial conduction", Cryogenics, Vol. 52, No. 7-9, 2012, pp. 366-374, doi: https://doi.org/10.1016/j.cryogenics.2012.03.001.
- S. Yang, Z. Zhao, Y. Zhang, Z. Chen, and M. Yang, "Effects of fin arrangements on thermal hydraulic performance of supercritical nitrogen in printed circuit heat exchanger", Processes, Vol. 9, No. 5, 2021, pp. 861, doi: https://doi.org/10.3390/pr9050861.
- J. H. Shin and S. H. Yoon, "Thermal and hydraulic performance of a printed circuit heat exchanger using two-phase nitrogen", Applied Thermal Engineering, Vol. 168, 2020, pp. 114802, doi: https://doi.org/10.1016/j.applthermaleng.2019.114802.
- S. Sohn and B. I. Choi, "A study on thermal design of printed circuit heat exchanger for supply of cryogenic high pressure liquid hydrogen", Journal of Hydrogen and New Energy, Vol. 32, No. 5, 2021, pp. 347-355, doi: https://doi.org/10.7316/KHNES.2021.32.5.347.
- S. Sohn and W. Kim, "A study on anti-icing design by conjugate heat transfer analysis in a lab-scale printed circuit heat exchanger for supply of cryogenic high pressure liquid hydrogen", Journal of Hydrogen and New Energy, Vol. 33, No. 5, 2022, pp. 541-549, doi: https://doi.org/10.7316/KHNES.2022.33.5.541.
- D. Kwon, L. Jin, W. S. Jung, and S Jeong, "Experimental investigation of heat transfer coefficient of mini-channel PCHE (printed circuit heat exchanger)", Cryogenics, Vol.92, 2018, pp. 41-49, doi: https://doi.org/10.1016/j.cryogenics.2018.03.011.
- J. W. Yoo, C. W. Nam, and S. H. Yoon, "Experimental study of propane condensation heat transfer and pressure drop in semicircular channel printed circuit heat exchanger", Intern ational Journal of Heat and Mass Transfer, Vol. 182, 2022, pp. 121939, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121939.