DOI QR코드

DOI QR Code

청정수소 생산 방식 도입에 따른 LCA 기반 탄소중립 기여도 평가

An Evaluation of Net-zero Contribution by Introducing Clean Hydrogen Production Using Life Cycle Assessment

  • 장소정 (한국생산기술연구원 대경기술실용화본부 모빌리티시스템그룹) ;
  • 정대웅 (한국생산기술연구원 대경기술실용화본부 모빌리티시스템그룹) ;
  • 김정열 (한국생산기술연구원 지속가능기술연구소 산업에너지연구부문) ;
  • 황용우 (인하대학교 환경공학과) ;
  • 안희경 (한국생산기술연구원 대경기술실용화본부 모빌리티시스템그룹)
  • SO JEONG JANG (Advanced Mobility System Group, Daegyeong Technology Application Division, Korea Institute of Industrial Technology) ;
  • DAE WOONG JUNG (Advanced Mobility System Group, Daegyeong Technology Application Division, Korea Institute of Industrial Technology) ;
  • JEONG YEOL KIM (Industrial Energy R&D Department, Research Institute of Sustainable Development Technology, Korea Institute of Industrial Technology) ;
  • YONG WOO HWANG (Department of Environmental Engineering, Inha University) ;
  • HEE KYUNG AN (Advanced Mobility System Group, Daegyeong Technology Application Division, Korea Institute of Industrial Technology)
  • 투고 : 2024.02.07
  • 심사 : 2024.04.19
  • 발행 : 2024.04.30

초록

This study focuses on investigating the importance of managing greenhouse gas emissions from global energy consumption, specifically examining domestic targets for clean hydrogen production. Using life cycle assessment, we evaluated reductions in global warming potential and assessed the carbon neutrality contribution of the domestic hydrogen sector. Transitioning from brown or grey hydrogen to blue or green hydrogen can significantly reduce emissions, potentially lowering CO2 equivalent levels by 2030 and 2050. These research findings underscore the effectiveness of clean hydrogen as an energy management strategy and offer valuable insights for technology development.

키워드

과제정보

본 논문은 한국생산기술연구원 기본사업 "산업계 탄소중립을 위한 청정수소 생산-저장 및 탄소저감 모니터링 시스템 실용화 기술개발" 지원으로 수행한 연구입니다.

참고문헌

  1. International Energy Agency (IEA), "Net zero in 2050: a roadmap for the global energy sector", IEA, 2021. Retrieved from https://www.iea.org/reports/net-zero-by-2050. 
  2. J. Diab, L. Fulcheri, V. Hessel, V. Rohani, and M. Frenklach, "Why turquoise hydrogen will be a game changer for the energy transition", International Journal of Hydrogen Energy, Vol. 47, No. 61, 2022, pp. 25831-25848, doi: https://doi.org/10.1016/j.ijhydene.2022.05.299. 
  3. Clean Hydrogen Partnership, "Clean hydrogen joint undertaking (clean hydrogen JU) work programme 2023", Clean Hydrogen Partnership, 2023. Retrieved from https://www.clean-hydrogen.europa.eu/system/files/2023-01/Clean%20Hydrogen%20JU%20AWP%202023_0.pdf. 
  4. K. Kim, J. Ahn, J. Lee, and J. Kang, "A study on the strategies for early settlement of market driven hydrogen economy in Korea (3/3)", Korea Energy Economics Institute, 2022. Retrieved from https://lib.keei.re.kr:448/search/DetailView.ax?sid=5&cid=811900. 
  5. Ministry of Trade, Industry and Energy (MOTIE), "Introducing a clean hydrogen certification system", MOTIE, 2023. Retrieved from https://www.korea.kr/briefing/pressReleaseView.do?newsId=156599580&pWise=sub&pWiseSub=C9. 
  6. J. Kim and T. Lee, "A study on technological and institutional improvement of electrolyser for the economics of clean hy-drogen production", Korea Energy Economics Institute, 2022. Retrieved from https://www.keei.re.kr/main.nsf/index.html?open&p=%2Fweb_keei%2Fd_results.nsf%2Fmain_all%2FBF500FDBCA776AA0492589800003D178&s=. 
  7. P. Forster, T. Storelvmo, K. Armour, W. Collins, J. L. Dufresne, D. Frame, D. J. Lunt, T. Mauritsen, M. D. Palmer, M. Watanabe, M. Wild, and H. Zhang, "The earth's energy budget, climate feedbacks and climate sensitivity", In: V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou eds, "Climate change 2021: the physical science basis", Cambridge University Press, UK, 2021, pp. 923-1054, doi: https://doi.org/10.1017/9781009157896.009. 
  8. C. Smith, Z. R. J. Nicholls, K. Armour, W. Collins, P. Forster, M. Meinshausen, M. D. Palmer, and M. Watanabe, "2021: the earth's energy budget, climate feedbacks, and climate sensitivity supplementary material", V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Pean, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekci, R. Yu, and B. Zhou eds, "Climate change 2021: the physical science basis", Cambridge University Press, UK, 2021. Retrieved from https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07_SM.pdf. 
  9. D. Burchart, M. Gazda-Grzywacz, P. Grzywacz, P. Burmistrz, and K. Zarebska, "Life cycle assessment of hydrogen production from coal gasification as an alternative transport fuel", Energies, Vol. 16, No. 1, 2023, pp. 383, doi: https://doi.org/10.3390/en16010383. 
  10. D. B. Pal, R. Chand, S. N. Upadhyay, and P. K. Mishra, "Performance of water gas shift reaction catalysts: a review", Renewable and Sustainable Energy Reviews, Vol. 93, 2018, pp. 5 49-565, doi: https://doi.org/10.1016/j.rser.2018.05.003. 
  11. Z. Kapetaki, P. Brandani, S. Brandani, and H. Ahn, "Process simulation of a dual-stage selexol process for 95% carbon capture efficiency at an integrated gasification combined cycle power plant", International Journal of Greenhouse Gas Control, Vol. 39, 2015, pp. 17-26, doi: https://doi.org/10.1016/j.ijggc.2015.04.015. 
  12. F. Suleman, I. Dincer, and M. Agelin-Chaab, "Comparative impact assessment study of various hydrogen production methods in terms of emissions", International Journal of Hydrogen Energy, Vol. 41, No. 19, 2016, pp. 8364-8375, doi: https://doi.org/10.1016/j.ijhydene.2015.12.225. 
  13. P. L. Spath and M. K. Mann, "Life cycle assessment of hydrogen production via natural gas steam reforming", National Renewable Energy Lab, 2000, doi: https://doi.org/10.2172/764485. 
  14. M. Hermesmann and T. E. Muller, "Green, turquoise, blue, or grey? environmentally friendly hydrogen production in transforming energy systems", Progress in Energy and Combustion Science, Vol. 90, 2022, pp. 100996, doi: https://doi.org/10.1016/j.pecs.2022.100996. 
  15. International Energy Agency Greenhouse Gas R&D Programme (IEAGHG), "Techno-economic evaluation of SMR based standalone (merchant) hydrogen plant with CCS", IEAGHG, 2017. Retrieved from https://documents.ieaghg.org/index.php/s/HKtMncwfw2vaBxl. 
  16. N. Gerloff, "Comparative life-cycle-assessment analysis of three major water electrolysis technologies while applying various energy scenarios for a greener hydrogen production", Journal of Energy Storage, Vol. 43, 2021, pp. 102759, doi: https://doi.org/10.1016/j.est.2021.102759. 
  17. Ministry of Trade, Industry and Energy (MOTIE), "Domestic production of 1 million tons of clean hydrogen by 2030... nurturing 30 global hydrogen companies", MOTIE, 2021. Retrieved from https://www.korea.kr/news/policyNewsView.do?newsId=148894079. 
  18. Joint Ministries, "2030 national greenhouse gas reduction target (NDC) upgrade plan", Presidential Commission on Carbon Neutrality and Green Growth, 2021. Retrieved from https://2050cnc.go.kr/flexer/view/BOARD_ATTACH?storageNo=174. 
  19. Joint Ministries, "2050 carbon neutral scenario", Energy GHG Total Information Platform Service, 2021. Retrieved from https://tips.energy.or.kr/uplolad/carbon/첨부1_2050%20탄소중립%20시나리오안-최종.pdf.