DOI QR코드

DOI QR Code

Towards a Scalable SDN Hypervisors Framework

  • Aamir Hussain (Department of Computer Science, Muhammad Nawaz Shareef University of Agriculture) ;
  • Sajid Ali (Department of Information Technology, University of Education) ;
  • Mubashir Ali (Department of Software Engineering, Lahore Garrison University) ;
  • Sarfraz Hashim (Department of Computer Science, Muhammad Nawaz Shareef University of Agriculture)
  • Received : 2024.02.05
  • Published : 2024.02.29

Abstract

Software-Defined Networking (SDN) is a new emerging networking paradigm that has adopted a logically centralized architecture to increase overall network performance agility and programmability. Combining network virtualization with SDN will guarantees for combined advantages of improved flexibility and network performance. Combining SDN with hypervisors divides the network physical resources into several logical transparent and isolated virtual SDN network (vSDN), where each has its virtual controller. However, SDN hypervisors bring several advantages as well as several challenges to its network operators as for the virtual appliances, their efficient placement, assurance of network performance is mandatory, and their dynamic instantiation with their migration. In this article, we provide a brief and concise review of network virtualization along with its implementation in the SDN network. SDN hypervisors types are discussed, and taxonomy is provided to demonstrate the importance of hypervisors in SDN. A comparison of SDN hypervisors is performed to elaborate on the vital hypervisor software along with their features, and different challenges are discussed faced by the SDN network. A framework is proposed to add combined functionalities of hypervisors to create a more effective and efficient virtual system. The purpose of the framework is to increase network performance through proper configuration of resources, software, control plane isolation functions with defined rules and policies.

Keywords

References

  1. Latif, S., S. Akram, and M.A. Saleem, Channel assignment using differential evolution algorithm in cognitive radio networks. International Journal of Advanced and Applied Sciences, 2017. 4: p. 160-166. https://doi.org/10.21833/ijaas.2017.08.023
  2. Blenk, A., et al., Survey on network virtualization hypervisors for software-defined networking. IEEE Communications Surveys & Tutorials, 2016. 18(1): p. 655-685. https://doi.org/10.1109/COMST.2015.2489183
  3. Malik, M.V. and C. Barde, Survey on architecture of leading hypervisors and their live migration techniques. International Journal of Computer Science and Mobile Computing, IJCSMC, 2014. 3(11).
  4. Drutskoy, D.A., Software-defined network virtualization with flying. 2012, Princeton University.
  5. Basit, A. and R. Hussain, Performance evaluation of simultaneous network configuration using dual-stack and tunnel transition techniques: An enterprise-level analysis. INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2017. 4(1): p. 102-109. https://doi.org/10.21833/ijaas.2017.01.015
  6. Chowdhury, N.M.K. and R. Boutaba, Network virtualization: state of the art and research challenges. IEEE Communications Magazine, 2009. 47(7).
  7. Jain, R. and S. Paul, Network virtualization and software-defined networking for cloud computing: a survey. IEEE Communications Magazine, 2013. 51(11): p. 24-31. https://doi.org/10.1109/MCOM.2013.6658648
  8. Alam, S., et al., Dynamic resource allocation for cognitive radio based smart grid communication networks. Int. J. Adv. Appl. Sci., 2017. 4(10): p. 76-83. https://doi.org/10.21833/ijaas.2017.010.012
  9. Khan, A., et al., Network virtualization: a hypervisor for the Internet? IEEE Communications Magazine, 2012. 50(1).
  10. Ahamad, T. and A. Aljumah, Preventive mechanism against DDoS attacks in MANET. International Journal of Advanced and Applied Sciences, 2017. 4(5): p. 94-100. https://doi.org/10.21833/ijaas.2017.05.017
  11. Cziva, R., et al. SDN-based virtual machine management for cloud data centers. IEEE Transactions on Network and Service Management, 2016. 13(2): p. 212-225. https://doi.org/10.1109/TNSM.2016.2528220
  12. Soltesz, S., et al. Container-based operating system virtualization: a scalable, high-performance alternative to hypervisors. in ACM SIGOPS Operating Systems Review. 2007.
  13. Barr, K., et al., The VMware mobile virtualization platform: is that a hypervisor in your pocket? ACM SIGOPS Operating Systems Review, 2010. 44(4): p. 124-135. https://doi.org/10.1145/1899928.1899945
  14. Sherwood, R., et al., Flowvisor: A network virtualization layer. OpenFlow Switch Consortium, Tech. Rep, 2009. 1: p. 132.
  15. Bozakov, Z., and P. Papadimitriou. Autoslice: automated and scalable slicing for software-defined networks. in Proceedings of the 2012 ACM conference on CoNEXT student workshop. 2012.
  16. Drutskoy, D., E. Keller, and J. Rexford, Scalable network virtualization in software-defined networks. IEEE Internet Computing, 2013. 17(2): p. 20-27. https://doi.org/10.1109/MIC.2012.144
  17. Blenk, A., A. Basta, and W. Kellerer. HyperFlex: An SDN virtualization architecture with flexible hypervisor function allocation. in Integrated Network Management (IM), 2015 IFIP/IEEE International Symposium on. 2015. IEEE.
  18. Corin, R.D., et al. Vertigo: Network virtualization and beyond. in Software Defined Networking (EWSDN), 2012 European Workshop on. 2012. IEEE.
  19. Sailer, R., et al. Building a MAC-based security architecture for the Xen open-source hypervisor. in Computer security applications conference, 21st Annual. 2005. IEEE.
  20. Rosenblum, M. and T. Garfinkel, Virtual machine monitors: Current technology and future trends. Computer, 2005. 38(5): p. 39-47. https://doi.org/10.1109/MC.2005.176
  21. Bozakov, Z., and A. Rizk. Taming SDN controllers in heterogeneous hardware environments. in Software Defined Networks (EWSDN), 2013 Second European Workshop on. 2013. IEEE.
  22. Sieber, C., et al. hvbench: An open and scalable SDN network hypervisor benchmark. in NetSoft Conference and Workshops (NetSoft), 2016 IEEE. 2016. IEEE.
  23. Salvadori, E., et al. Generalizing virtual network topologies in OpenFlow-based networks. in Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE. 2011. IEEE.
  24. Bouras, C., A. Kollia, and A. Papazois. SDN & NFV in 5G: Advancements and challenges. in Innovations in Clouds, Internet, and Networks (ICIN), 2017 20th Conference on. 2017. IEEE.
  25. Sahoo, J., S. Mohapatra, and R. Lath. Virtualization: A survey on concepts, taxonomy and associated security issues. in Computer and Network Technology (ICCNT), 2010 Second International Conference on. 2010. IEEE.
  26. Sezer, S., et al., Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Communications Magazine, 2013. 51(7): p. 36-43. https://doi.org/10.1109/MCOM.2013.6553676
  27. Ali, S.T., et al., A survey of securing networks using software defined networking. IEEE transactions on reliability, 2015. 64(3): p. 1086-1097. https://doi.org/10.1109/TR.2015.2421391
  28. You, W., et al., Towards security in virtualization of SDN. Int J Comput Control, Quantum Inf Eng, 2014. 8(8): p. 2014.
  29. Bozakov, Z. and P. Papadimitriou. Towards a scalable software-defined network virtualization platform. in Network Operations and Management Symposium (NOMS), 2014 IEEE. 2014. IEEE.
  30. Vilalta, R., et al., Multidomain network hypervisor for abstraction and control of OpenFlow-enabled multitenant multitechnology transport networks. Journal of Optical Communications and Networking, 2015. 7(11): p. B55-B61. https://doi.org/10.1364/JOCN.7.000B55
  31. Basta, A., et al. HyperFlex: Demonstrating control-plane isolation for virtual software-defined networks. in Integrated Network Management (IM), 2015 IFIP/IEEE International Symposium on. 2015. IEEE.
  32. Jin, X., J. Rexford, and D. Walker. Incremental update for a compositional SDN hypervisor. in Proceedings of the third workshop on Hot topics in software defined networking. 2014. ACM.