DOI QR코드

DOI QR Code

Implications of European Union's Groundwater Nitrate Management Policies for Korea's Sustainable Groundwater Management

유럽연합의 지하수 질산염 관리정책의 우리나라 지속가능한 지하수관리에의 시사점

  • Junseop Oh (Department of Earth and Environmental Sciences, Korea University) ;
  • Jaehoon Choi (Department of Earth and Environmental Sciences, Korea University) ;
  • Hyunsoo Seo (Department of Earth and Environmental Sciences, Korea University) ;
  • Ho-Rim Kim (Korea Institute of Geoscience and Mineral Resources) ;
  • Hyun Tai Ahn (Department of Earth and Environmental Sciences, Korea University) ;
  • Seong-Taek Yun (Department of Earth and Environmental Sciences, Korea University)
  • 오준섭 (고려대학교 지구환경과학과) ;
  • 최재훈 (고려대학교 지구환경과학과) ;
  • 서현수 (고려대학교 지구환경과학과) ;
  • 김호림 (한국지질자원연구원 광물자원본부) ;
  • 안현태 (고려대학교 지구환경과학과) ;
  • 윤성택 (고려대학교 지구환경과학과)
  • Received : 2024.03.11
  • Accepted : 2024.03.21
  • Published : 2024.04.29

Abstract

This study examines the European Union (EU)'s policies on managing nitrate contamination in groundwater and provides implications for the future groundwater management in South Korea. Initiated by the 1991 Nitrate Directive, the EU has pursued a multifaceted approach to reduce agricultural nitrate pollution through sustainable ('good') farming practices, regular nitrate level monitoring, and designating Nitrate Vulnerable Zones. Further policy integrations, like the Water Framework Directive and Groundwater Directive, have established comprehensive protection strategies, including the use of pollutant threshold values. Recently, the 2019 Green Deal escalated efforts against nitrates, aligning with broader environmental and climate objectives. This review aims to explore these developments, highlighting key mitigation strategies against nitrate pollution, and providing valuable insights for the future sustainable groundwater nitrate management in South Korea, emphasizing the importance of preventive measures and collaborative efforts to restore and improve groundwater quality.

본 연구는 지하수 내 질산염 오염관리를 위한 유럽연합(EU)의 정책 동향을 분석하고, 한국에서의 지속가능한 지하수 관리정책에의 시사점을 도출하고자 수행되었다. EU의 지하수 질산염 관리 정책은 1991년 질산염 지침 도입으로 구체화되었다. 이 지침에서는 농업활동에서 발생하는 질산염 오염 감소를 목표로 하여 회원국들에게 지속가능한 농법 적용, 질산염 농도 모니터링, 그리고 기준치 초과 지역에 대한 질산염 취약 지역 지정을 요구하였다. 2000년 수질 프레임워크 지침(WFD)은 이를 확장, 모든 수역의 좋은 상태 달성 목표를 설정했으며, 2006년 지하수 지침(GWD)은 질산염 지침을 보완하여 지하수 보호를 위한 포괄적 접근 제공과 함께 오염물질 문턱값(threshold) 설정 등을 명시하였다. 2019년에는 그린딜(Green Deal) 발표와 함께 환경 및 기후변화 대응 목표에 부합하기 위해 질산염과 관련한 조치는 더욱 강화되었다. 본 논문에서는 이러한 변천사를 살펴봄으로써 질산염 오염 감소를 위한 주요 전략과 동향을 확인하고 현재 당면한 문제를 해결하기 위해 EU는 어떠한 노력을 기울이고 있는지 파악하고자 하였다. 연구는 EU의 동향을 기반으로 국내의 질산염 오염 문제의 현황과 이를 해결하기 위한 통합 관리 방식, 규제 체계, 농업 교육 프로그램 등 주요 시사점을 도출하고자 하였다. 본 연구 결과는 예방적 조치의 강화와 이해관계자 간 협력 증진이 한국 지하수의 질산염 오염문제를 해결하고 지하수 품질을 향상시키는 단서가 될 수 있음을 제시한다.

Keywords

Acknowledgement

본 연구 결과는 오랫동안 이루어진 국내 지하수 조사∙연구과제의 지원에 의한 산물이며, 이에 제주보건환경연구원, 국립환경과학원, K-Water 등의 지원에 감사드린다.

References

  1. Bouchard, D.C., Williams, M.K. and Surampalli, R.Y. (1992) Nitrate contamination of groundwater: sources and potential health effects. J. Am. Water. Works. Assoc. v.84, p.85-90. https://doi.org/10.1002/j.1551-8833.1992.tb07430.x.
  2. Chae, G.T., Yun, S.T., Mayer, B., Choi, B.Y., Kim, K.H., Kwon, J.S. and Yu, S.Y. (2009) Hydrochemical and stable isotopic assessment of nitrate contamination in an alluvial aquifer underneath a riverside agricultural field. Agric. Water. Manag. v.96, p.1819-1827. https://doi.org/10.1016/j.agwat.2009.08.001.
  3. Chica-Olmo, M., Peluso, F., Luque-Espinar, J.A., Rodriguez-Galiano, V., Pardo-Iguzquiza, E. and Chica-Rivas, L. (2017) A methodology for assessing public health risk associated with groundwater nitrate contamination: a case study in an agricultural setting (southern Spain). Environ. Geochem. Health. v.39, p.1117-1132. https://doi.org/10.1007/s10653-016-9880-7.
  4. Choi, W.J., Han, G.H., Lee, S.M., Lee, G.T., Yoon, K.S., Choi, S.M. and Ro, H.M. (2007) Impact of land-use types on nitrate concentration and δ15N in unconfined groundwater in rural areas of Korea. Agric. Ecosyst. Environ. v.120, p.259-268. https://doi.org/10.1016/j.agee.2006.10.002.
  5. EU (2024) How EU policy is decided. Accessed at 17 February 2024. https://european-union.europa.eu/institutions-law-budget/law/how-eu-policy-decided_en.
  6. EU Commission (1991) Directive 91/676/EEC. Council Directive of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Official Journal of European Community.
  7. EU Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of European Community.
  8. EU Commission (2006) Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Official Journal of European Community.
  9. EU Commission (2019) The European Green Deal sets out how to make Europe the first climate-neutral continent by 2050, boosting the economy, improving people's health and quality of life, caring for nature, and leaving no one behind. Accessed 18 February 2024. https://ec.europa.eu/commission/presscorner/detail/en/ip_19_6691.
  10. EU Commission (2021) Report from the Commission to the Council and the European Parliament on the implementation of Council Directive 91/676/EEC concerning the protection of waters against pollution caused by nitrates from agricultural sources based on Member State reports for the period 2016-2019. Official Journal of European Community.
  11. EU Commission (2024) Protecting waters from pollution caused by nitrates from agricultural sources - Evaluation. Accessed at 7 March 2024. https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/14051/public-consultation_en.
  12. European Environment Agency (2023a) Nitrate in groundwater. Accessed 18 February 2024. https://www.eea.europa.eu/en/analysis/indicators/nitrate-in-groundwater-8th-eap.
  13. European Environment Agency (2023b) Nutrients in freshwater in Europe. Accessed 18 February 2024. https://www.eea.europa.eu/en/analysis/indicators/nitrate-in-groundwater-8th-eap.
  14. Giakoumis, T. and Voulvoulis, N. (2018) The transition of EU water policy towards the Water Framework Directive's integrated river basin management paradigm. Environ. Manage. v.62, p.819-831. https://doi.org/10.1007/s00267-018-1080-z.
  15. K-water. (2023) Statistics on Groundwater Usage by Purpose. Accessed 20 February 2024. https://www.bigdata-environment.kr/user/data_market/detail.do?id=7a5297f0-1404-11eb-bc79-3b11eb915d6d#!.
  16. Ki, M.G., Koh, D.C., Yoon, H. and Kim, H. (2015) Temporal variability of nitrate concentration in groundwater affected by intensive agricultural activities in a rural area of Hongseong, South Korea. Environ. Earth Sci. v.74, p.6147-6161. https://doi.org/10.1007/s12665-015-4637-7
  17. Kim, H.R., Oh, J., Do, H.K., Lee, K.J., Hyun, I.H., Oh, S.S., Kam, S.K. and Yun, S.T. (2018) Spatial-temporal variations of nitrate levels in groundwater of Jeju Island, Korea: evaluation of longterm (1993-2015) monitoring data. Econ. Environ. Geol. v.51, p.15-26. https://doi.org/10.9719/EEG.2018.51.1.15.
  18. Kim, H.R., Yu, S., Oh, J., Kim, K.H., Oh, Y.Y., Kim, H.K., Park, S. and Yun, S.T. (2019a) Assessment of nitrogen application limits in agro-livestock farming areas using quantile regression between nitrogen loadings and groundwater nitrate levels. Agric. Ecosyst. Environ. v.286, p.106660. https://doi.org/10.1016/j.agee.2019.106660.
  19. Kim, H.R., Yu, S., Oh, J., Kim, K.H., Lee, J.H., Moniruzzaman, M., Kim, H.K. and Yun, S.T. (2019b) Nitrate contamination and subsequent hydrogeochemical processes of shallow groundwater in agro-livestock farming districts in South Korea. Agric. Ecosyst. Environ. v.273, p.50-61. https://doi.org/10.1016/j.agee.2018.12.010.
  20. Kim, J.J. and Hyun, Y. (2021) Assessment of groundwater quality on a watershed scale by using groundwater quality monitoring data. J. Soil Groundwater Environ. v.26, p.2021. https://doi.org/10.7857/JSGE.2021.26.6.186
  21. ME (2016) Investigation of the Contamination Status Including the Background Concentration of Groundwater in Livestock Complex Areas (16'). Ministry of Environment, Sejong-si, Korea.
  22. ME (2017) Improvement Project for Nitrate Nitrogen Water Quality Management in Groundwater of Agricultural and Livestock Areas (I). Ministry of Environment, Sejong-si, Korea.
  23. Koh, D.C., Chae, G.T., Yoon, Y.Y., Kang, B.R., Koh, G.W. and Park, K.H. (2009) Baseline geochemical characteristics of groundwater in the mountainous area of Jeju Island, South Korea: Implications for degree of mineralization and nitrate contamination. J. Hydrol. v.376, p.81-93. https://doi.org/10.1016/j.jhydrol.2009.07.016.
  24. Muller, D., Blum, A., Hart, A., Hookey, J., Kunkel, R., Scheidleder, A., Tomlin, C. and Wendland, F. (2006) Final proposal for a methodology to set up groundwater threshold values in Europe. Report to the EU project '"BRIDGE"' 2006, Deliverable D18006538, 63.
  25. Ricolfi, L., Barbieri, M., Muteto, P.V., Nigro, A., Sappa, G. and Vitale, S. (2020) Potential toxic elements in groundwater and their health risk assessment in drinking water of Limpopo National Park, Gaza Province, Southern Mozambique. Environ. Geochem. Health v.42, p.2733-2745. https://doi.org/10.1007/s10653-019-00507-z.
  26. Schmoll, O., Howard, G., Chilton, J. and Chorus, I. (2006) Protecting groundwater for health: managing the quality of drinking-water sources. World Health Organization.