DOI QR코드

DOI QR Code

응집제 및 탈수튜브(KOMIR-Tube 시스템)를 활용한 광산배수 슬러지 탈수 영향인자 평가

Assessment on Impact Factor for Dehydration of Mine Drainage Sludge Using Flocculant and Dewatering Tube(KOMIR-Tube System)

  • Misun Park (Korea of Mine Rehabilitation and Mineral Resources Corporation) ;
  • Juin Ko (Korea of Mine Rehabilitation and Mineral Resources Corporation) ;
  • Gwanin Bak (Korea of Mine Rehabilitation and Mineral Resources Corporation) ;
  • Seunghan Baek (Korea of Mine Rehabilitation and Mineral Resources Corporation)
  • 투고 : 2024.03.01
  • 심사 : 2024.04.04
  • 발행 : 2024.04.29

초록

광산배수 슬러지를 대상으로 응집제와 탈수튜브를 이용한 슬러지 탈수시스템(이하 KOMIR-Tube 시스템)의 탈수율 향상을 위한 영향인자를 평가하였다. 실험은 KOMIR-Tube 시스템으로 탈수 시 함수율 90 % 이상인 semi-active 시설 슬러지를 대상으로 하였다. 실내실험을 통해 응집제 및 투입량을 결정하였고, 현장실험을 통해 탈수율을 확인하였다. 실내실험 결과, 슬러지 탈수처리 시 응집제 선정은 침강성(sedimentation) 이외 여과성(filterability)을 같이 평가해야 하고, 이때 형성된 플럭의 적정 크기는 최소 0.7 mm 이상의 크기를 유지해야 탈수율을 향상할 수 있었다. KOMIR-Tube 시스템을 이용한 현장실험 결과, 슬러지 함수율은 강우 및 습도 등 환경적 기후 조건에 영향을 받는 것으로 분석되었다. 이에 슬러지 탈수처리는 강우량과 습도가 낮은 4월~5월에 수행하는 것이 적합한 것으로 판단된다. 또한, 슬러지의 주요 구성광물 결정도에 따라 탈수율 차이를 보였다. 특히 철수산화물 중 페리하이드라이트보다 침철석 구성비가 높은 경우, 탈수율이 높은 것으로 나타났다. 이는 페리하이드라이트의 결정도가 침철석 보다 낮고 결정형태가 뚜렷하지 않기 때문으로 판단된다. 침철석은 결정도가 높고 침상을 이루고 있어 응집 및 탈수율에 영향을 미치는 것으로 보인다. KOMIR-Tube 시스템을 이용한 광산배수 슬러지 탈수 시 탈수율에 영향을 미치는 인자는 응집제, 기후조건, 결정성 광물의 존재 유무 그리고 철화합물의 결정도 및 입자 형태로 나타났다.

In this study, impact factors for dehydration with KOMIR-Tube system using flocculant and dewatering tube were evaluated for mine drainage sludges. The experiments were conducted on semi-active facility sludges with water contents above 90 % using KOMIR-Tube system. The flocculant and input amount were determined from laboratory experiment and the dewatering efficiency was verified onsite experiment. The sludge characteristics were identified by instrumental analysis such as zeta potential measurement, particle size analysis, XRD, XRF and SEM-EDS. Selection of flocculants for sludge dewatering treatment need to consider not only precipitated rate but also filterated rate. Floc size has to keep at least 0.7 mm. From on-site experiments, sludge dewatering using KOMIR-Tube system suggests to carry out April and May that is low rainfall and humidity considering to climate conditions. Also, dewatering rate depends on the crystal degree of mineral that mainly makes up sludges. Particularly, goethite of the iron hydroxides has better dewatering rate than ferrihydrite. Ferrihydrite is low degree of crystallinity and uncleared or broad shaped crystal, goethite is good crystallinity with needle shaped crystal so that the effect of flocculation and dewatering showed to depend on the crystal. In results, impact factors of dewatering for mine drainage sludges are related to flocculant, climate, crystallinity and shape of iron hydroxides.

키워드

과제정보

이 논문은 2022년 한국광해광업공단으로부터 연구비를 지원받아 수행된 사업임.

참고문헌

  1. Caraballo, M.A., Asta, M. P., Perez, J.P. and Hochella Jr. M.F. (2022) Past, present and future global influence and technological applications of iron-bearing metastable nanominerals. Gondwana Research, v.110, p.283-304. doi: 10.1016/j.gr.2021.11.009
  2. Cheong, Y. (2017) Dewatering Mine Sludge Using Geotextile Tubes. J. Korean Soc. Miner. Energy Resour. Eng., v.54, n.3, p.280-289. https://doi.org/10.12972/ksmer.2017.54.3.280
  3. Kim, D., Kim, D., Hong, S. and Kim, S. (2016) Assessment of Dewatering Process Using Flocculation and Self-filtration According to Characteristics of Mine Drainage Sludge. J. Korean Soc. Miner. Energy Resour. Eng., v.53, n.6, p.562-571. doi: 10.12972/ksmer.2016.53.6.562
  4. Kim, J., Park, M. and Yu, J.Y. (2016) Study on the 2-line ferrihydrite to goethite transformation in an aqueous solution at an ambient temperature and pressure. Journal of the Geological Society of Korea, v.52, no.2, p.121-127. doi: 10.14770/jgsk.2016.52.2.121
  5. KOMIR(Korea Mine Rehabilitation and Mineral Resources Corp.) (2021) Research and Development for commercializing with sludge teatment system for water treatment facilities. Report 2021-037, MIRECO, p1-38
  6. KOMIR1 (2022) Guidebook : Mine Rehabilitation Technology in Korea, 2022 Edition, Report 2022-048, KOMIR, p72-73
  7. KOMIR2(Korea Mine Rehabilitation and Mineral Resources Corp.) (2022) Improvement with dewatering system for mine drainage sludges, Report 2022-058, KOMIR, p58-77
  8. Liu, H., Ma, M., Qin, M., Yang, L. and Wei, Y. (2010) Studies on the controllable transformation of ferrihydrite. Journal of Solid State Chemistry, v.183, p.2045-2050. doi: 10.1016/j.jssc.2010.07.012
  9. Ma, J., Jing, Y., Gao, J., Chen, J., Wang, Z., Weng, L., Li, H., Chen Y. and Li, Y. (2020) Hetero-aggregation of goethite and ferrihydrite nanoparticles controlled by goethite nanoparticles with elongated morphology. Science of the Total Environment, v.748, 141536. doi: 10.1016/j.scitotenv.2020.141536
  10. Mangunda, C., Petersen. J. and Lewis. A. (2018) The dewatering behavior of transformed ferri-oxyhydroxide precipitates formed under moderate temperature and varying Fe(III) concentrations, Part of the Minerals, Metals and Materials series, Conference paper, p.1597-1609. doi: 10.1007/978-3-319-95022-8_132
  11. MIRECO1(Korea Mine Reclamation Corp.) (2016) Development of technology for removing sludge and scale around mine drainage treatment facilities. Report 2015-041, MIRECO, p.161-172.
  12. MIRECO2(Korea Mine Reclamation Corp.) (2016) Development of maintenance technology for mine drainage treatment facilities. Report 2016-051, MIRECO, p.31-51.
  13. MIRECO(Korea Mine Reclamation Corp.) (2020) Research on improving and commercializing the MIRECO-Tube sludge dewatering treatment system. Report 2020-048, MIRECO, p.3-32.
  14. NIER(National Institute of Environmental Research) (2022) Korea standard methods for waste analysis
  15. Oh, T., Whang, W., Lee, J. and Cha, J. (2016) Precipitation of Acid Mine Drainage Using Coagulants and Flocculants. J. of Korean Inst. of Resources Recycling, v.25, n.3, p.3-10. http://dx.doi.org/10.7844/kirr.2016.25.3.3
  16. Usman, M., Hanna, K., Abdelmoula, M., Zegeye, A. and Ruby, C. (2012) Formation of green rust via mineralogical of ferric oxides(ferrihydrite, goethite and hematite). Applied Clay Science, v.64, p.38-43. doi: 10.1016/j.clay.2011.10.008
  17. Yu, J.-Y., Park, M. and Kim, J. (2002) Solubilities of synthetic schwertmannite and ferrihydrite. Geochemistry Journal. v.36, n.2, p.119-132. doi: 10.2343/geochemj.36.119
  18. OCI-SNF, YANGFLOC Series, p.3
  19. Weather by Korea Meteorological Administration, 2022, www.weather.go.kr