DOI QR코드

DOI QR Code

습식 골재 생산 공정에서 모래 및 케이크 발생량 평가

Evaluation of Changes in Particle Size and Production of Sand and Cake Produced in Wet Aggregate Production Process

  • 정영욱 (한국지질자원연구원 자원환경연구센터) ;
  • 이진영 (한국지질자원연구원 제4기환경연구센터) ;
  • 홍세선 (한국지질자원연구원 제4기환경연구센터)
  • Young-Wook Cheong (Geo-Environment Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Jin-Young Lee (Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Sei-Sun Hong (Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources)
  • 투고 : 2024.02.21
  • 심사 : 2024.04.08
  • 발행 : 2024.04.29

초록

연구는 국내 골재 생산 과정에서 발생하는 케이크의 발생을 줄이는 방안을 찾고자 수행되었다. 8개 습식 골재 생산 업체의 케이크를 수집하여 입도를 분석하였다. A 골재 생산 현장에서 시료를 채취하고 입도 분석을 수행했다. 생산 공정을 모델링하여 모래 회수 장치 전후에서 물질 수지를 계산했다. 8개의 케이크 입도 분석 결과 하나의 시료에서 모래가 50% 포함된 사례도 있었고 나머지는 약 5~25% 포함하고 있었다. 케이크 내 다양한 모래가 포함하고 있다는 결과는 현장의 모래 회수 장치의 회수 효율이 다양함을 의미할 수 있다. A 업체 파쇄 공정에서 모래 입도는 2차 파쇄 때보다 3차 파쇄 때에 2.8배 증가했고 케이크 입자도 더 많이 발생했다. 모래 회수 공정을 모사한 결과 사이클론 및 탈수체의 분극점이 낮아질수록 모래 생산은 증가했고 케이크 발생은 적어지는 추세가 나타났다. 현장에서 케이크의 발생을 줄이기 위해서 골재생산 공정에서 특히 모래 회수 장치의 적정 운전이 필요할 것으로 판단되었다.

This study was conducted to find a way to reduce the production of cakes generated in the domestic aggregate production process. Cakes from 8 wet aggregate producers were collected and particle size was analyzed. Samples were collected step by step from an aggregate producer A, particle size analysis was performed, and the material balance was calculated before and after an sand recovery unit by modeling the production process. As a result of the particle size analysis of eight cakes, one sample contained 50% sand, and the rest contained about 5% to 25% sand. The results showing that the cake contained a variety of sand in cakes may indicate that the recovery efficiency of the sand recovery units in the field varied. Sieve analysis of the samples showed that the generation of sand particles increased 2.8 times during the third crushing compared to the second crushing, and more cake particles were generated. As a result of simulating the sand recovery unit model, the lower the cut point of the cyclone and dewatering screen, the higher the sand production and the less cake production appeared. In order to reduce the production of cake in the field, it was determined that an optimal operation of the sand recovery unit was necessary in the aggregate production process.

키워드

과제정보

본 연구는 한국지질자원연구원에서 수행하고 있는 국토교통부 "2024년 골재자원조사 및 관리(IP2024-008-2024)"사업의 지원으로 수행되었습니다. 좋은 의견을 제안해 주셔서 원고의 질을 높여 주신 두 분의 심사위원께 감사함을 전합니다.

참고문헌

  1. Bhadani, K., Asbjornsson, G., Hulthen, E. and Evertsson, M. (2020) Development and implementation of key performance indicators for aggregate production using dynamic simulation. Mineral Engineering, v.145, p.1-14. doi: 10.1016/j.mineng.2019.106065 
  2. Chea, K.S., Koo, N.K., Lee, Y.G., Yang, H.M. and Park, K.H. (2023) Study on the Trend of Aggregate Industry, Korean J. Mineral, v.36, p.135-145. 
  3. Cheong, Y.W., Lee, J.Y. and Hong, S.S. (2023) Sludge production evaluation using a wet aggregate production process model, 2023 Fall Joint Conference of KSMER-KSRM-KSEG-KSPE. 
  4. Chungcheong review (2019) www.ccreview.co.kr/news/articleView.html?idxno=205874, (2021.9.9.) 
  5. Collis and Fox, R.A. (1985) Aggregates: Sand, gravel and crushed rock aggregates for construction purposes. The Geological Society, p.59-126. 
  6. Heinrich, R.W. (2019) Simulation of mineral processing plants with "NIAflow®", Haver & Boecker, p.1-19. 
  7. Hou, D., Liu, P., Zhao, Q., Jiang, L., Cui, B. and Wei, D. (2023) Numerical study on the separation performance of hydrocyclones with different secondary cylindrical section diameters, Processes, https://doi.org/10.3390/pr11092542 
  8. Jeldres, R.I., Fawell, P.D. and Florio, B.J. (2018) Population balance modelling to describe the particle aggregation process: A review. Power Technology, v.326, 15, p.190-207. doi: 10.1016/j.powtec.2017.12.033 
  9. Jo, H., Ji, S.W., Shin, H.Y., Jo, J., Kim, J. and Bang, J.H. (2019) A study on the classification of fine particles by using a multi-step hydrocyclone for the recycling of waste concrete slurry. J. Korean Soc. Miner. Energy Resour. Eng., v.56, p.73-78. doi:10.32390/ksmer.2019.56.1.073 
  10. KBIZ (2018) Aggregate news, www.ac.or.kr/new/1431 (2021.9.9) 
  11. Lee, J.Y., Cheong, Y.W., Ji, S.W. and Lee, D.G. (2021) Evaluation of some stone dust and sludge generated in the aggregate production process and research trends for its use. Economic and Environmental Geology, v.4, p.605-613. doi: 10.9719/EEG.2021.54.5.605 
  12. Malewski, J. (2019) Availability and capacity assessment of aggregates processing plants, Study & Research papers, p.1-7. 
  13. Metso, Crushing and screening handbook, Sixth edition, p.1-336. www.metso.com (2024.1.03) 
  14. Metso, Basics in minerals processing, edition 12, p.1-1-6-24, (https://www.metso.com, 2024.1.3) 
  15. Mining machinary Co (2016) Aggregate & aggregate plant, p.27-44. 
  16. Park (2020) The Current state and application of crushed-stone sludge, MRCR, p.66-72. doi: 10.14190/MRCR.2020.15.3.066 
  17. Samyoung plant co., Crushing plant, sand plant, mill plant, p.1-27, http://www.syplant.co.kr/catalogue-download.html (2023.12.15) 
  18. Sisa press (2021) www.sisajournal.com/news/articleView.html?idxno=139522 (2021.9.16) 
  19. Sonmez, B., Nozawa, E., Corsini, J., Jankovic, A., Valery, W., Dundar, H.B., Benzer, A.H. and Ribeiro, R. (2013) Modelling and simulation studies at an aggregate plant, Proceedings of the XV Balkan Mineral Processing Congress, Sozopol, Bulgaria, p.12-16. 
  20. VSH(Vibrating screen handbook), Vibrating screen manufacturers' Association, www.shop.aem.org (2023.12.28) 
  21. Yamashita, A.S., Thivierge, A. and Euzebio, A.A.M. (2021) A review of modeling and control strategies for cone crushers in the mineral processing and quarrying industries, Mineral Processing, v.170. doi: 10.1016/j.mineng.2021.107036 
  22. Yilmaz, E. (2014) Field monitoring and performance evaluation of crushing plant operation. Physicochemical Problems of Mineral Processing, v.50, p.615-630. doi: 10.5277/ppmp140216 
  23. (https://www.911metallurgist.com/blog/screening) (2024.1.18)