DOI QR코드

DOI QR Code

Mitofusin-2 enhances cervical cancer progression through Wnt/β-catenin signaling

  • Sung Yong Ahn (Department of Orthopaedic Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine)
  • Received : 2023.10.29
  • Accepted : 2024.02.27
  • Published : 2024.04.30

Abstract

Overexpression of mitofusin-2 (MFN2), a mitochondrial fusion protein, is frequently associated with poor prognosis in cervical cancer patients. Here, I aimed to investigate the involvement of MFN2 in cervical cancer progression and determine the effect of MFN2 on prognosis in cervical cancer patients. After generating MFN2-knockdown SiHa cells derived from squamous cell carcinoma, I investigated the effect of MFN2 on SiHa cell proliferation using the Cell Counting Kit-8 assay and determined the mRNA levels of proliferation markers. Colony-forming ability and tumorigenesis were evaluated using a colony-formation assay and tumor xenograft mouse models. The migratory and invasive abilities associated with MFN2 were measured using wound-healing and invasion assays. Wnt/β-catenin-mediated epithelial-mesenchymal transition (EMT) markers related to MFN2 were assessed through quantitative RT-PCR. MFN2-knockdown SiHa cells exhibited reduced proliferation, colony formation, migration, invasion, and tumor formation in vivo. The motility of SiHa cells with MFN2 knockdown was reduced through Wnt/β-catenin-mediated EMT inhibition. MFN2 promoted cancer progression and tumorigenesis in SiHa cells. Overall, MFN2 could serve as a therapeutic target and a novel biomarker for cervical cancer.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (RS-2023-00246602) to S.Y.A.).

References

  1. Dasari S, Wudayagiri R and Valluru L (2015) Cervical cancer: biomarkers for diagnosis and treatment. Clin Chim Acta 445, 7-11 https://doi.org/10.1016/j.cca.2015.03.005
  2. Senapathy JG, Umadevi P and Kannika PS (2011) The present scenario of cervical cancer control and HPV epidemiology in India: an outline. Asian Pac J Cancer Prev 12, 1107-1115
  3. Cohen PA, Jhingran A, Oaknin A and Denny L (2019) Cervical cancer. Lancet 393, 169-182 https://doi.org/10.1016/S0140-6736(18)32470-X
  4. Targonski CA, Shearer CA, Shealy BT, Smith MC and Feltus FA (2019) Uncovering biomarker genes with enriched classification potential from Hallmark gene sets. Sci Rep 9, 9747
  5. Zong WX, Rabinowitz JD and White E (2016) Mitochondria and Cancer. Mol Cell 61, 667-676 https://doi.org/10.1016/j.molcel.2016.02.011
  6. Vyas S, Zaganjor E and Haigis MC (2016) Mitochondria and cancer. Cell 166, 555-566 https://doi.org/10.1016/j.cell.2016.07.002
  7. Youle RJ and van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337, 1062-1065 https://doi.org/10.1126/science.1219855
  8. Hoppins S, Lackner L and Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76, 751-780 https://doi.org/10.1146/annurev.biochem.76.071905.090048
  9. Ehses S, Raschke I, Mancuso G et al (2009) Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J Cell Biol 187, 1023-1036 https://doi.org/10.1083/jcb.200906084
  10. Kowald A and Kirkwood TB (2011) The evolution and role of mitochondrial fusion and fission in aging and disease. Commun Integr Biol 4, 627-629 https://doi.org/10.4161/cib.17110
  11. Senft D and Ronai ZA (2016) Regulators of mitochondrial dynamics in cancer. Curr Opin Cell Biol 39, 43-52 https://doi.org/10.1016/j.ceb.2016.02.001
  12. Karimi D, Pedram N, Kakaei F, Asadi M, Poursaei E and Kermani TA (2022) FIS1 overexpression is correlated with tumor metastasis in gastric adenocarcinoma. J Gastrointest Cancer 53, 466-471
  13. Liu X, Sun J, Yuan P et al (2019) Mfn2 inhibits proliferation and cell-cycle in Hela cells via Ras-NF-kappaB signal pathway. Cancer Cell Int 19, 197
  14. Xu K, Chen G, Li X et al (2017) MFN2 suppresses cancer progression through inhibition of mTORC2/Akt signaling. Sci Rep 7, 41718
  15. Jin B, Fu G, Pan H et al (2011) Anti-tumour efficacy of mitofusin-2 in urinary bladder carcinoma. Med Oncol 28 Suppl 1, S373-380
  16. Fang CL, Sun DP, Chen HK et al (2017) Overexpression of mitochondrial GTPase MFN2 represents a negative prognostic marker in human gastric cancer and its inhibition exerts anti-cancer effects. J Cancer 8, 1153-1161 https://doi.org/10.7150/jca.17986
  17. Lou Y, Li R, Liu J et al (2015) Mitofusin-2 over-expresses and leads to dysregulation of cell cycle and cell invasion in lung adenocarcinoma. Med Oncol 32, 132
  18. Ahn SY, Li C, Zhang X and Hyun YM (2018) Mitofusin-2 expression is implicated in cervical cancer pathogenesis. Anticancer Res 38, 3419-3426 https://doi.org/10.21873/anticanres.12610
  19. Thiery JP, Acloque H, Huang RY and Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890 https://doi.org/10.1016/j.cell.2009.11.007
  20. Guan X, Bidlack FB, Stokes N and Bartlett JD (2014) E-cadherin can replace N-cadherin during secretory-stage enamel development. PLoS One 9, e102153
  21. van Roy F and Berx G (2008) The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 65, 3756-3788 https://doi.org/10.1007/s00018-008-8281-1
  22. Taciak B, Pruszynska I, Kiraga L, Bialasek M and Krol M (2018) Wnt signaling pathway in development and cancer. J Physiol Pharmacol 69, 2, 185-196
  23. Purohit PK, Edwards R, Tokatlidis K and Saini N (2019) MiR-195 regulates mitochondrial function by targeting mitofusin-2 in breast cancer cells. RNA Biol 16, 918-929 https://doi.org/10.1080/15476286.2019.1600999
  24. Yan H, Qiu C, Sun W et al (2018) Yap regulates gastric cancer survival and migration via SIRT1/Mfn2/mitophagy. Oncol Rep 39, 1671-1681
  25. Sun Q, Chen L, Zhou D et al (2019) Mfn2 inhibits chronic rejection of the rat abdominal aorta by regulating TGF-beta1 levels. Transpl Immunol 55, 101211
  26. Wang W, Cheng X, Lu J et al (2010) Mitofusin-2 is a novel direct target of p53. Biochem Biophys Res Commun 400, 587-592 https://doi.org/10.1016/j.bbrc.2010.08.108
  27. Reya T and Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434, 843-850 https://doi.org/10.1038/nature03319
  28. Yook JI, Li XY, Ota I et al (2006) A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 8, 1398-1406 https://doi.org/10.1038/ncb1508
  29. Taketo MM (2004) Shutting down Wnt signal-activated cancer. Nat Genet 36, 320-322 https://doi.org/10.1038/ng0404-320
  30. Cadigan KM and Liu YI (2006) Wnt signaling: complexity at the surface. J Cell Sci 119, 395-402 https://doi.org/10.1242/jcs.02826