DOI QR코드

DOI QR Code

Foundation Types of Fixed Offshore Wind Turbine

  • Yun Jae Kim (Department of Mechanical System Engineering, Gyeongsang National University) ;
  • Jin-wook Choe (Power Cable Research Center, Korea Electrotechnology Research Institute) ;
  • Jinseok Lim (Power Cable Research Center, Korea Electrotechnology Research Institute) ;
  • Sung Woong Choi (Department of Mechanical System Engineering, Gyeongsang National University)
  • 투고 : 2023.12.05
  • 심사 : 2024.02.27
  • 발행 : 2024.04.30

초록

Offshore wind turbines are supported by various foundations, each with its considerations in design and construction. Gravity, monopile, and suction bucket foundations encounter geotechnical issues, while jacket and tripod foundations face fatigue problems. Considering this, a gravity foundation based on a steel skirt was developed, and a monopile foundation was analyzed for Pile-Soil Interaction using the p-y curve and 3D finite element method (3D FEM). In addition, for suction bucket foundations, the effects of lateral and vertical loads were analyzed using 3D FEM and centrifuge tests. Fatigue analysis for jacket and tripod foundations was conducted using a hotspot stress approach. Some hybrid foundations and shape optimization techniques that change the shape to complement the problems of each foundation described above were assessed. Hybrid foundations could increase lateral resistance compared to existing foundations because of the combined appendages, and optimization techniques could reduce costs by maximizing the efficiency of the structure or by reducing costs and weight. This paper presents the characteristics and research directions of the foundation through various studies on the foundation. In addition, the optimal design method is presented by explaining the problems of the foundation and suggesting ways to supplement them.

키워드

과제정보

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (20213000000020, Development of core equipment and evaluation technology for construction of subsea power grid for offshore wind farm)

참고문헌

  1. 4C Offshore. (2020). Global offshore wind farms database and intelligence. https://www.4coffshore.com/windfarms/ 
  2. Achmus, M., Kuo, Y. S., & Abdel-Rahman, K. (2009). Behavior of monopile foundations under cyclic lateral load. Computers and Geotechnics, 36(5), 725-735. https://doi.org/10.1016/j.compgeo.2008.12.003 
  3. American Petroleum Institute (API). (2000). API 2A-WSD: Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design. American Petroleum Institute. 
  4. Amzallag, C., Gerey, J. P., Robert, J. L., & Bahuaud, J. (1994). Standardization of the rainflow counting method for fatigue analysis. International journal of fatigue, 16(4), 287-293. https://doi.org/10.1016/0142-1123(94)90343-3 
  5. Andersen, L. V., Vahdatirad, M. J., Sichani, M. T., & Sorensen, J. D. (2012). Natural frequencies of wind turbines on monopile foundations in clayey soils-A probabilistic approach. Computers and Geotechnics, 43, 1-11. https://doi.org/10.1016/j.compgeo.2012.01.010 
  6. Arshad, M., & O'Kelly, B. C. (2015). Analysis and design of monopile foundations for offshore wind-turbine structures. Marine Georesources & Geotechnology, 34(6), 503-525. https://doi.org/10.1080/1064119X.2015.1033070 
  7. Askarinejad, A., Wang, H., Chortis, G., & Gavin, K. (2022). Influence of scour protection layers on the lateral response of monopile in dense sand. Ocean Engineering, 244, 110377. ps://doi.org/10.1016/j.oceaneng.2021.110377 
  8. Barthelmie, R. J., Courtney, M. S., Hojstrup, J., & Larsen, S. E. (1996). Meteorological aspects of offshore wind energy: Observations from the Vindeby wind farm. Journal of Wind Engineering and Industrial Aerodynamics, 62(2-3), 191-211. https://doi.org/10.1016/S0167-6105(96)00077-3 
  9. Bekken, L. (2009). Lateral behavior of large diameter offshore monopile foundations for wind turbines. 
  10. Bendat, J. S. (1964). Probability functions for random responses: prediction of peaks, fatigue damage, and catastrophic. 
  11. Bisoi, S., & Haldar, S. (2014). Dynamic analysis of offshore wind turbine in clay considering soil-monopile-tower interaction. Soil Dynamics and Earthquake Engineering, 63, 19-35. https://doi.org/10.1016/j.soildyn.2014.03.006 
  12. Byrne, B. W., & Houlsby, G. T. (2003). Foundations for offshore wind turbines. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361(1813), 2909-2930. https://doi.org/10.1098/rsta.2003.1286 
  13. Chen, D., Gao, P., Huang, S., Li, C., & Yu, X. (2020). Static and dynamic loading behavior of a hybrid foundation for offshore wind turbines. Marine Structures, 71, 102727. https://doi.org/10.1016/j.marstruc.2020.102727 
  14. Chen, I. W., Wong, B. L., Lin, Y. H., Chau, S. W., & Huang, H. H. (2016). Design and analysis of jacket substructures for offshore wind turbines. Energies, 9(4), 264. https://doi.org/10.3390/en9040264 
  15. Dirlik, T. (1985). Application of computers in fatigue analysis (Doctoral dissertation, University of Warwick). 
  16. DNV. (2016). Fatigue design of offshore steel structures (DNVGLRP-C203). Norwegian University of Science and Technology. Veritas As, Offshore Standard DNV-OS-j101. 
  17. Efthymiou, M. (1988). Development of SCF formulae and generalised influence functions for use in fatigue analysis. 
  18. Guan, D. W., Xie, Y. X., Yao, Z. S., Chiew, Y. M., Zhang, J. S., & Zheng, J. H. (2022). Local scour at offshore windfarm monopile foundations: A review. Water Science and Engineering, 15(1), 29-39. https://doi.org/10.1016/j.wse.2021.12.006 
  19. Guo, Y., Wang, H., & Lian, J. (2022). Review of integrated installation technologies for offshore wind turbines: Current progress and future development trends. Energy Conversion and Management, 255, 115319. https://doi.org/10.1016/j.enconman.2022.115319 
  20. GWEC. (2022). Global offshore wind report 2022. https://gwec.net/gwecs- global-offshore-wind-report/ 
  21. Esteban, M. D., Lopez-Gutierrez, J. S., & Negro, V. (2019). Gravity-based foundations in the offshore wind sector. Journal of Marine Science and Engineering, 7(3), 64. https://doi.org/10.3390/jmse7030064 
  22. Esteban, M. D., Counago, B., Lopez-Gutierrez, J. S., Negro, V., & Vellisco, F. (2015). Gravity based support structures for offshore wind turbine generators: Review of the installation process. Ocean Engineering, 110(Part A), 281-291. https://doi.org/10.1016/j.oceaneng.2015.10.033 
  23. Hao, E., & Liu, C. (2017). Evaluation and comparison of anti-impact performance to offshore wind turbine foundations: Monopile, tripod, and jacket. Ocean engineering, 130, 218-227. https://doi.org/10.1016/j.oceaneng.2016.12.008 
  24. Hearn, E. N., & Edgers, L. (2010). Finite element analysis of an offshore wind turbine monopile. In GeoFlorida 2010: Advances in Analysis, Modeling & Design (pp. 1857-1865). https://doi.org/10.1061/41095(365)188 
  25. ICE. (2017). The EDF renewables Blyth offshore demonstrator windfarm project. Institution of Civil Engineers. https://www.ice.org.uk/what-is-civil-engineering/what-do-civil-engineers-do/the-edf-renewables-blyth-offshore-demonstrator-windfarm-project 
  26. Jiang, Z. (2021). Installation of offshore wind turbines: A technical review. Renewable and Sustainable Energy Reviews, 139, 110576. https://doi.org/10.1016/j.rser.2020.110576 
  27. Jung, S., Kim, S. R., & Patil, A. (2015). Effect of monopile foundation modeling on the structural response of a 5-MW offshore wind turbine tower. Ocean Engineering, 109, 479-488. https://doi.org/10.1016/j.oceaneng.2015.09.033 
  28. Jeanjean, P. (2009, May). Re-assessment of P-Y curves for soft clays from centrifuge testing and finite element modeling. In Offshore technology conference (pp. OTC-20158), OTC. https://doi.org/10.4043/20158-MS 
  29. Ju, S. H., Su, F. C., Ke, Y. P., & Xie, M. H. (2019). Fatigue design of offshore wind turbine jacket-type structures using a parallel scheme. Renewable Energy, 136, 69-78. https://doi.org/10.1016/j.renene.2018.12.071 
  30. Kaveh, A., & Sabeti, S. (2018). Optimal design of jacket supporting structures for offshore wind turbines using CBO and ECBO algorithms. Periodica Polytechnica Civil Engineering, 62(3), 545-554. https://doi.org/10.3311/PPci.11651 
  31. Kim, H. G., & Kim, B. J. (2018). Feasibility study of new hybrid piled concrete foundation for offshore wind turbine. Applied Ocean Research, 76, 11-21. https://doi.org/10.1016/j.apor.2018.04.005 
  32. Larsen, J. H., Soerensen, H. C., Christiansen, E., Naef, S., & Volund, P. (2005, October). Experiences from Middelgrunden 40 MW offshore wind farm. In Copenhagen offshore wind conference (pp. 1-8). Denmark: Copenhagen. 
  33. Liu, H., Diambra, A., Abell, J. A., & Pisano, F. (2020). Memory-enhanced plasticity modeling of sand behavior under undrained cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, 146(11), 04020122. https://doi.org/10.1061/(ASCE)GT.1943-5606.000236 
  34. Liu, M., Yang, M., & Wang, H. (2014). Bearing behavior of wide-shallow bucket foundation for offshore wind turbines in drained silty sand. Ocean Engineering, 82, 169-179. https://doi.org/10.1016/j.oceaneng.2014.02.034 
  35. Lu, F., Long, K., Zhang, C., Zhang, J., & Tao, T. (2023). A novel design of the offshore wind turbine tripod structure using topology optimization methodology. Ocean Engineering, 280, 114607. https://doi.org/10.1016/j.oceaneng.2023.114607 
  36. Li, L., Zheng, M., Liu, X., Wu, W., Liu, H., El Naggar, M. H., & Jiang, G. (2022). Numerical analysis of the cyclic loading behavior of monopile and hybrid pile foundation. Computers and Geotechnics, 144, 104635. https://doi.org/10.1016/j.compgeo.2022.104635 
  37. Li, X., Zeng, X., & Wang, X. (2020). Feasibility study of monopile-friction wheel-bucket hybrid foundation for offshore wind turbine. Ocean Engineering, 204, 107276. https://doi.org/10.1016/j.oceaneng.2020.107276 
  38. Li, X., Zeng, X., & Wang, X. (2020). Feasibility study of monopile-friction wheel-bucket hybrid foundation for offshore wind turbine. Ocean Engineering, 204, 107276. https://doi.org/10.1016/j.oceaneng.2020.107276 
  39. Liu, H. Y., & Kaynia, A. M. (2022). Monopile responses to monotonic and cyclic loading in undrained sand using 3D FE with SANISAND-MSu. Water Science and Engineering, 15(1), 69-77. https://doi.org/10.1016/j.wse.2021.12.001 
  40. Lombardi, D., Bhattacharya, S., & Wood, D. M. (2013). Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil. Soil Dynamics and Earthquake Engineering, 49, 165-180. https://doi.org/10.1016/j.soildyn.2013.01.015 
  41. Lozano-Minguez, E., Kolios, A. J., & Brennan, F. P. (2011). Multi-criteria assessment of offshore wind turbine support structures. Renewable Energy, 36(11), 2831-2837. https://doi.org/10.1016/j.renene.2011.04.020 
  42. Lu, F., Long, K., Diaeldin, Y., Saeed, A., Zhang, J., & Tao, T. (2023). A time-domain fatigue damage assessment approach for the tripod structure of offshore wind turbines. Sustainable Energy Technologies and Assessments, 60, 103450. https://doi.org/10.1016/j.seta.2023.103450 
  43. Ma, H., Yang, J., & Chen, L. (2018). Effect of scour on the structural response of an offshore wind turbine supported on tripod foundation. Applied Ocean Research, 73, 179-189. https://doi.org/10.1016/j.apor.2018.02.007
  44. Marjan, A., & Hart, P. (2022). Impact of Design Parameters on the Dynamic Response and Fatigue of Offshore Jacket Foundations. Journal of Marine Science and Engineering, 10(9), 1320. https://doi.org/10.3390/jmse10091320 
  45. Mathern, A., von der Haar, C., & Marx, S. (2021). Concrete support structures for offshore wind turbines: Current status, challenges, and future trends. Energies, 14(7), 1995. https://doi.org/10.3390/en14071995 
  46. Menge, P., & Gunst, N. (2008). Gravity based foundations for the wind turbines on Thorntonback-Belgium. 15de Innovatieforum Geotechniek. Antwerpen, Belgium. 
  47. Miner, M. A. (1945). Cumulative fatigue damage. Journal of applied mechanics, 12(3), A159-A164. https://doi.org/10.1115/1.4009458 
  48. Ministry of Trade Industry and Energy. (2017). Korea's renewable energy 3020 implementation plan. https://gggi.org/wp-content/uploads/2018/10/Presentation-by-Mr.-Kyung-ho-Lee-Director-of-the-New-and-Renewable-Energy-Policy-Division-MOTIE.pdf 
  49. Oh, K. Y., Nam, W., Ryu, M. S., Kim, J. Y., & Epureanu, B. I. (2018). A review of foundations of offshore wind energy convertors: Current status and future perspectives. Renewable and Sustainable Energy Reviews, 88, 16-36. https://doi.org/10.1016/j.rser.2018.02.005 
  50. Park, M., Park, S. G., Seong, B. C., Choi, Y. J., & Jung, S. H. (2021). Current status and prospective of offshore wind power to achieve Korean renewable energy 3020 plan. Journal of Korean Society of Environmental Engineers, 43(3), 196-205. 
  51. Saleem, Z. (2011). Alternatives and modifications of monopile foundation or its installation technique for noise mitigation. TUDelft Report, TUDelft University. 
  52. Shi, W., Park, H., Chung, C., Baek, J., Kim, Y., & Kim, C. (2013). Load analysis and comparison of different jacket foundations. Renewable Energy, 54, 201-210. https://doi.org/10.1016/j.renene.2012.08.008 
  53. Sunday, K., & Brennan, F. (2021). A review of offshore wind monopiles structural design achievements and challenges. Ocean Engineering, 235, 109409. https://doi.org/10.1016/j.oceaneng.2021.109409 
  54. Tian, X., Sun, X., Liu, G., Deng, W., Wang, H., Li, Z., & Li, D. (2022). Optimization design of the jacket support structure for offshore wind turbine using topology optimization method. Ocean Engineering, 243, 110084. https://doi.org/10.1016/j.oceaneng.2021.110084 
  55. Tian, X., Liu, G., Deng, W., Xie, Y., & Wang, H. (2024). Fatigue constrained topology optimization for the jacket support structure of offshore wind turbine under the dynamic load. Applied Ocean Research, 142, 103812. https://doi.org/10.1016/j.apor.2023.103812 
  56. Winkler, E. (1867). Die Lehre von Elastizitat und Festigkeit [The theory of elasticity and stiffness]. H. Domenicus, Prague. 
  57. Wang, X., Zeng, X., Li, J., Yang, X., & Wang, H. (2018). A review on recent advancements of substructures for offshore wind turbines. Energy conversion and management, 158, 103-119. https://doi.org/10.1016/j.enconman.2017.12.061 
  58. Wang, X., Yang, X., & Zeng, X. (2017a). Centrifuge modeling of lateral bearing behavior of offshore wind turbine with suction bucket foundation in sand. Ocean Engineering, 139, 140-151. https://doi.org/10.1016/j.oceaneng.2017.04.046 
  59. Wang, X., Yang, X., & Zeng, X. (2017b). Seismic centrifuge modelling of suction bucket foundation for offshore wind turbine. Renewable energy, 114, 1013-1022. https://doi.org/10.1016/j.renene.2017.07.103 
  60. Wang, X., Zeng, X., & Li, J. (2019). Vertical performance of suction bucket foundation for offshore wind turbines in sand. Ocean Engineering, 180, 40-48. https://doi.org/10.1016/j.oceaneng.2019.03.049 
  61. Liu, H., & Kaynia, A. M. (2022). Monopile responses to monotonic and cyclic loading in undrained sand using 3D FE with SANISAND-MSu. Water Science and Engineering, 15(1), 69-77. https://doi.org/10.1016/j.wse.2021.12.001 
  62. Yeter, B., Garbatov, Y., & Soares, C. G. (2015). Fatigue damage assessment of fixed offshore wind turbine tripod support structures. Engineering Structures, 101, 518-528. https://doi.org/10.1016/j.engstruct.2015.07.038 
  63. Zaayer, M. B. (2002). Foundation models for the dynamic response of offshore wind turbines. Proceedings of the international conference on marine renewable energy, Newcastle, UK (pp. 111-117). Institute of Marine Engineering, Science and Technology. 
  64. Zhang, F., Chen, X., Yan, J., & Gao, X. (2023). Countermeasures for local scour around offshore wind turbine monopile foundations: A review. Applied Ocean Research, 141, 103764. https://doi.org/10.1016/j.apor.2023.103764