Acknowledgement
This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (20213000000020, Development of core equipment and evaluation technology for construction of subsea power grid for offshore wind farm)
References
- 4C Offshore. (2020). Global offshore wind farms database and intelligence. https://www.4coffshore.com/windfarms/
- Achmus, M., Kuo, Y. S., & Abdel-Rahman, K. (2009). Behavior of monopile foundations under cyclic lateral load. Computers and Geotechnics, 36(5), 725-735. https://doi.org/10.1016/j.compgeo.2008.12.003
- American Petroleum Institute (API). (2000). API 2A-WSD: Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design. American Petroleum Institute.
- Amzallag, C., Gerey, J. P., Robert, J. L., & Bahuaud, J. (1994). Standardization of the rainflow counting method for fatigue analysis. International journal of fatigue, 16(4), 287-293. https://doi.org/10.1016/0142-1123(94)90343-3
- Andersen, L. V., Vahdatirad, M. J., Sichani, M. T., & Sorensen, J. D. (2012). Natural frequencies of wind turbines on monopile foundations in clayey soils-A probabilistic approach. Computers and Geotechnics, 43, 1-11. https://doi.org/10.1016/j.compgeo.2012.01.010
- Arshad, M., & O'Kelly, B. C. (2015). Analysis and design of monopile foundations for offshore wind-turbine structures. Marine Georesources & Geotechnology, 34(6), 503-525. https://doi.org/10.1080/1064119X.2015.1033070
- Askarinejad, A., Wang, H., Chortis, G., & Gavin, K. (2022). Influence of scour protection layers on the lateral response of monopile in dense sand. Ocean Engineering, 244, 110377. ps://doi.org/10.1016/j.oceaneng.2021.110377
- Barthelmie, R. J., Courtney, M. S., Hojstrup, J., & Larsen, S. E. (1996). Meteorological aspects of offshore wind energy: Observations from the Vindeby wind farm. Journal of Wind Engineering and Industrial Aerodynamics, 62(2-3), 191-211. https://doi.org/10.1016/S0167-6105(96)00077-3
- Bekken, L. (2009). Lateral behavior of large diameter offshore monopile foundations for wind turbines.
- Bendat, J. S. (1964). Probability functions for random responses: prediction of peaks, fatigue damage, and catastrophic.
- Bisoi, S., & Haldar, S. (2014). Dynamic analysis of offshore wind turbine in clay considering soil-monopile-tower interaction. Soil Dynamics and Earthquake Engineering, 63, 19-35. https://doi.org/10.1016/j.soildyn.2014.03.006
- Byrne, B. W., & Houlsby, G. T. (2003). Foundations for offshore wind turbines. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 361(1813), 2909-2930. https://doi.org/10.1098/rsta.2003.1286
- Chen, D., Gao, P., Huang, S., Li, C., & Yu, X. (2020). Static and dynamic loading behavior of a hybrid foundation for offshore wind turbines. Marine Structures, 71, 102727. https://doi.org/10.1016/j.marstruc.2020.102727
- Chen, I. W., Wong, B. L., Lin, Y. H., Chau, S. W., & Huang, H. H. (2016). Design and analysis of jacket substructures for offshore wind turbines. Energies, 9(4), 264. https://doi.org/10.3390/en9040264
- Dirlik, T. (1985). Application of computers in fatigue analysis (Doctoral dissertation, University of Warwick).
- DNV. (2016). Fatigue design of offshore steel structures (DNVGLRP-C203). Norwegian University of Science and Technology. Veritas As, Offshore Standard DNV-OS-j101.
- Efthymiou, M. (1988). Development of SCF formulae and generalised influence functions for use in fatigue analysis.
- Guan, D. W., Xie, Y. X., Yao, Z. S., Chiew, Y. M., Zhang, J. S., & Zheng, J. H. (2022). Local scour at offshore windfarm monopile foundations: A review. Water Science and Engineering, 15(1), 29-39. https://doi.org/10.1016/j.wse.2021.12.006
- Guo, Y., Wang, H., & Lian, J. (2022). Review of integrated installation technologies for offshore wind turbines: Current progress and future development trends. Energy Conversion and Management, 255, 115319. https://doi.org/10.1016/j.enconman.2022.115319
- GWEC. (2022). Global offshore wind report 2022. https://gwec.net/gwecs- global-offshore-wind-report/
- Esteban, M. D., Lopez-Gutierrez, J. S., & Negro, V. (2019). Gravity-based foundations in the offshore wind sector. Journal of Marine Science and Engineering, 7(3), 64. https://doi.org/10.3390/jmse7030064
- Esteban, M. D., Counago, B., Lopez-Gutierrez, J. S., Negro, V., & Vellisco, F. (2015). Gravity based support structures for offshore wind turbine generators: Review of the installation process. Ocean Engineering, 110(Part A), 281-291. https://doi.org/10.1016/j.oceaneng.2015.10.033
- Hao, E., & Liu, C. (2017). Evaluation and comparison of anti-impact performance to offshore wind turbine foundations: Monopile, tripod, and jacket. Ocean engineering, 130, 218-227. https://doi.org/10.1016/j.oceaneng.2016.12.008
- Hearn, E. N., & Edgers, L. (2010). Finite element analysis of an offshore wind turbine monopile. In GeoFlorida 2010: Advances in Analysis, Modeling & Design (pp. 1857-1865). https://doi.org/10.1061/41095(365)188
- ICE. (2017). The EDF renewables Blyth offshore demonstrator windfarm project. Institution of Civil Engineers. https://www.ice.org.uk/what-is-civil-engineering/what-do-civil-engineers-do/the-edf-renewables-blyth-offshore-demonstrator-windfarm-project
- Jiang, Z. (2021). Installation of offshore wind turbines: A technical review. Renewable and Sustainable Energy Reviews, 139, 110576. https://doi.org/10.1016/j.rser.2020.110576
- Jung, S., Kim, S. R., & Patil, A. (2015). Effect of monopile foundation modeling on the structural response of a 5-MW offshore wind turbine tower. Ocean Engineering, 109, 479-488. https://doi.org/10.1016/j.oceaneng.2015.09.033
- Jeanjean, P. (2009, May). Re-assessment of P-Y curves for soft clays from centrifuge testing and finite element modeling. In Offshore technology conference (pp. OTC-20158), OTC. https://doi.org/10.4043/20158-MS
- Ju, S. H., Su, F. C., Ke, Y. P., & Xie, M. H. (2019). Fatigue design of offshore wind turbine jacket-type structures using a parallel scheme. Renewable Energy, 136, 69-78. https://doi.org/10.1016/j.renene.2018.12.071
- Kaveh, A., & Sabeti, S. (2018). Optimal design of jacket supporting structures for offshore wind turbines using CBO and ECBO algorithms. Periodica Polytechnica Civil Engineering, 62(3), 545-554. https://doi.org/10.3311/PPci.11651
- Kim, H. G., & Kim, B. J. (2018). Feasibility study of new hybrid piled concrete foundation for offshore wind turbine. Applied Ocean Research, 76, 11-21. https://doi.org/10.1016/j.apor.2018.04.005
- Larsen, J. H., Soerensen, H. C., Christiansen, E., Naef, S., & Volund, P. (2005, October). Experiences from Middelgrunden 40 MW offshore wind farm. In Copenhagen offshore wind conference (pp. 1-8). Denmark: Copenhagen.
- Liu, H., Diambra, A., Abell, J. A., & Pisano, F. (2020). Memory-enhanced plasticity modeling of sand behavior under undrained cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, 146(11), 04020122. https://doi.org/10.1061/(ASCE)GT.1943-5606.000236
- Liu, M., Yang, M., & Wang, H. (2014). Bearing behavior of wide-shallow bucket foundation for offshore wind turbines in drained silty sand. Ocean Engineering, 82, 169-179. https://doi.org/10.1016/j.oceaneng.2014.02.034
- Lu, F., Long, K., Zhang, C., Zhang, J., & Tao, T. (2023). A novel design of the offshore wind turbine tripod structure using topology optimization methodology. Ocean Engineering, 280, 114607. https://doi.org/10.1016/j.oceaneng.2023.114607
- Li, L., Zheng, M., Liu, X., Wu, W., Liu, H., El Naggar, M. H., & Jiang, G. (2022). Numerical analysis of the cyclic loading behavior of monopile and hybrid pile foundation. Computers and Geotechnics, 144, 104635. https://doi.org/10.1016/j.compgeo.2022.104635
- Li, X., Zeng, X., & Wang, X. (2020). Feasibility study of monopile-friction wheel-bucket hybrid foundation for offshore wind turbine. Ocean Engineering, 204, 107276. https://doi.org/10.1016/j.oceaneng.2020.107276
- Li, X., Zeng, X., & Wang, X. (2020). Feasibility study of monopile-friction wheel-bucket hybrid foundation for offshore wind turbine. Ocean Engineering, 204, 107276. https://doi.org/10.1016/j.oceaneng.2020.107276
- Liu, H. Y., & Kaynia, A. M. (2022). Monopile responses to monotonic and cyclic loading in undrained sand using 3D FE with SANISAND-MSu. Water Science and Engineering, 15(1), 69-77. https://doi.org/10.1016/j.wse.2021.12.001
- Lombardi, D., Bhattacharya, S., & Wood, D. M. (2013). Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil. Soil Dynamics and Earthquake Engineering, 49, 165-180. https://doi.org/10.1016/j.soildyn.2013.01.015
- Lozano-Minguez, E., Kolios, A. J., & Brennan, F. P. (2011). Multi-criteria assessment of offshore wind turbine support structures. Renewable Energy, 36(11), 2831-2837. https://doi.org/10.1016/j.renene.2011.04.020
- Lu, F., Long, K., Diaeldin, Y., Saeed, A., Zhang, J., & Tao, T. (2023). A time-domain fatigue damage assessment approach for the tripod structure of offshore wind turbines. Sustainable Energy Technologies and Assessments, 60, 103450. https://doi.org/10.1016/j.seta.2023.103450
- Ma, H., Yang, J., & Chen, L. (2018). Effect of scour on the structural response of an offshore wind turbine supported on tripod foundation. Applied Ocean Research, 73, 179-189. https://doi.org/10.1016/j.apor.2018.02.007
- Marjan, A., & Hart, P. (2022). Impact of Design Parameters on the Dynamic Response and Fatigue of Offshore Jacket Foundations. Journal of Marine Science and Engineering, 10(9), 1320. https://doi.org/10.3390/jmse10091320
- Mathern, A., von der Haar, C., & Marx, S. (2021). Concrete support structures for offshore wind turbines: Current status, challenges, and future trends. Energies, 14(7), 1995. https://doi.org/10.3390/en14071995
- Menge, P., & Gunst, N. (2008). Gravity based foundations for the wind turbines on Thorntonback-Belgium. 15de Innovatieforum Geotechniek. Antwerpen, Belgium.
- Miner, M. A. (1945). Cumulative fatigue damage. Journal of applied mechanics, 12(3), A159-A164. https://doi.org/10.1115/1.4009458
- Ministry of Trade Industry and Energy. (2017). Korea's renewable energy 3020 implementation plan. https://gggi.org/wp-content/uploads/2018/10/Presentation-by-Mr.-Kyung-ho-Lee-Director-of-the-New-and-Renewable-Energy-Policy-Division-MOTIE.pdf
- Oh, K. Y., Nam, W., Ryu, M. S., Kim, J. Y., & Epureanu, B. I. (2018). A review of foundations of offshore wind energy convertors: Current status and future perspectives. Renewable and Sustainable Energy Reviews, 88, 16-36. https://doi.org/10.1016/j.rser.2018.02.005
- Park, M., Park, S. G., Seong, B. C., Choi, Y. J., & Jung, S. H. (2021). Current status and prospective of offshore wind power to achieve Korean renewable energy 3020 plan. Journal of Korean Society of Environmental Engineers, 43(3), 196-205.
- Saleem, Z. (2011). Alternatives and modifications of monopile foundation or its installation technique for noise mitigation. TUDelft Report, TUDelft University.
- Shi, W., Park, H., Chung, C., Baek, J., Kim, Y., & Kim, C. (2013). Load analysis and comparison of different jacket foundations. Renewable Energy, 54, 201-210. https://doi.org/10.1016/j.renene.2012.08.008
- Sunday, K., & Brennan, F. (2021). A review of offshore wind monopiles structural design achievements and challenges. Ocean Engineering, 235, 109409. https://doi.org/10.1016/j.oceaneng.2021.109409
- Tian, X., Sun, X., Liu, G., Deng, W., Wang, H., Li, Z., & Li, D. (2022). Optimization design of the jacket support structure for offshore wind turbine using topology optimization method. Ocean Engineering, 243, 110084. https://doi.org/10.1016/j.oceaneng.2021.110084
- Tian, X., Liu, G., Deng, W., Xie, Y., & Wang, H. (2024). Fatigue constrained topology optimization for the jacket support structure of offshore wind turbine under the dynamic load. Applied Ocean Research, 142, 103812. https://doi.org/10.1016/j.apor.2023.103812
- Winkler, E. (1867). Die Lehre von Elastizitat und Festigkeit [The theory of elasticity and stiffness]. H. Domenicus, Prague.
- Wang, X., Zeng, X., Li, J., Yang, X., & Wang, H. (2018). A review on recent advancements of substructures for offshore wind turbines. Energy conversion and management, 158, 103-119. https://doi.org/10.1016/j.enconman.2017.12.061
- Wang, X., Yang, X., & Zeng, X. (2017a). Centrifuge modeling of lateral bearing behavior of offshore wind turbine with suction bucket foundation in sand. Ocean Engineering, 139, 140-151. https://doi.org/10.1016/j.oceaneng.2017.04.046
- Wang, X., Yang, X., & Zeng, X. (2017b). Seismic centrifuge modelling of suction bucket foundation for offshore wind turbine. Renewable energy, 114, 1013-1022. https://doi.org/10.1016/j.renene.2017.07.103
- Wang, X., Zeng, X., & Li, J. (2019). Vertical performance of suction bucket foundation for offshore wind turbines in sand. Ocean Engineering, 180, 40-48. https://doi.org/10.1016/j.oceaneng.2019.03.049
- Liu, H., & Kaynia, A. M. (2022). Monopile responses to monotonic and cyclic loading in undrained sand using 3D FE with SANISAND-MSu. Water Science and Engineering, 15(1), 69-77. https://doi.org/10.1016/j.wse.2021.12.001
- Yeter, B., Garbatov, Y., & Soares, C. G. (2015). Fatigue damage assessment of fixed offshore wind turbine tripod support structures. Engineering Structures, 101, 518-528. https://doi.org/10.1016/j.engstruct.2015.07.038
- Zaayer, M. B. (2002). Foundation models for the dynamic response of offshore wind turbines. Proceedings of the international conference on marine renewable energy, Newcastle, UK (pp. 111-117). Institute of Marine Engineering, Science and Technology.
- Zhang, F., Chen, X., Yan, J., & Gao, X. (2023). Countermeasures for local scour around offshore wind turbine monopile foundations: A review. Applied Ocean Research, 141, 103764. https://doi.org/10.1016/j.apor.2023.103764