DOI QR코드

DOI QR Code

Optimization Analysis of the Shape and Position of a Submerged Breakwater for Improving Floating Body Stability

  • Sanghwan Heo (Department of Naval Architecture and Ocean Engineering, Inha University) ;
  • Weoncheol Koo (Department of Naval Architecture and Ocean Engineering, Inha University) ;
  • MooHyun Kim (Department of Ocean Engineering, Texas A&M University)
  • 투고 : 2024.02.06
  • 심사 : 2024.02.25
  • 발행 : 2024.04.30

초록

Submerged breakwaters can be installed underneath floating structures to reduce the external wave loads acting on the structure. The objective of this study was to establish an optimization analysis framework to determine the corresponding shape and position of the submerged breakwater that can minimize or maximize the external forces acting on the floating structure. A two-dimensional frequency-domain boundary element method (FD-BEM) based on the linear potential theory was developed to perform the hydrodynamic analysis. A metaheuristic algorithm, the advanced particle swarm optimization, was newly coupled to the FD-BEM to perform the optimization analysis. The optimization analysis process was performed by calling FD-BEM for each generation, performing a numerical analysis of the design variables of each particle, and updating the design variables using the collected results. The results of the optimization analysis showed that the height of the submerged breakwater has a significant effect on the surface piercing body and that there is a specific area and position with an optimal value. In this study, the optimal values of the shape and position of a single submerged breakwater were determined and analyzed so that the external force acting on a surface piercing body was minimum or maximum.

키워드

과제정보

This study was supported by the MOTIE (Ministry of Trade, Industry, and Energy) in Korea, under the Human Resource Development Program for Industrial Innovation (Global) (P0017303, Smart Manufacturing Global Talent Training Program) supervised by the Korea Institute for Advancement of Technology (KIAT). This study was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2023-00278157).

참고문헌

  1. Ahandani, M. A. (2016). Opposition-based learning in the shuffled bidirectional differential evolution algorithm. Swarm and Evolutionary Computation, 26, 64-85. https://doi.org/10.1016/j.swevo.2015.08.002 
  2. Cao, F., Han, M., Shi, H., Li, M., & Liu, Z. (2022). Comparative study on metaheuristic algorithms for optimising wave energy converters. Ocean Engineering, 247, 110461. https://doi.org/10.1016/j.oceaneng.2021.110461 
  3. Chen, K., Zhou, F., Yin, L., Wang, S., Wang, Y., & Wan, F. (2018). A hybrid particle swarm optimizer with sine cosine acceleration coefficients. Information Sciences, 422, 218-241. https://doi.org/10.1016/j.ins.2017.09.015 
  4. Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In MHS'95. Proceedings of the sixth international symposium on micro machine and human science, Nagoya, Japan (pp. 39-43). IEEE. https://doi.org/10.1109/MHS.1995.494215 
  5. Ferri, G., & Marino, E. (2023). Site-specific optimizations of a 10 MW floating offshore wind turbine for the Mediterranean Sea. Renewable Energy, 202, 921-941. https://doi.org/10.1016/j.renene.2022.11.116 
  6. Gandomi, M., Pirooz, M. D., Nematollahi, B., Nikoo, M. R., Varjavand, I., Etri, T., & Gandomi, A. H. (2023). Multi-criteria decision-making optimization model for permeable breakwaters characterization. Ocean Engineering, 280, 114447. https://doi.org/10.1016/j.oceaneng.2023.114447 
  7. Huang, C. J., Chang, H. H., & Hwung, H. H. (2003). Structural permeability effects on the interaction of a solitary wave and a submerged breakwater. Coastal engineering, 49(1-2), 1-24. https://doi.org/10.1016/S0378-3839(03)00034-6. 
  8. Jeong, H. J., & Koo, W. (2023). Analysis of various algorithms for optimizing the wave energy converters associated with a sloped wall-type breakwater. Ocean Engineering, 276, 114199. https://doi.org/10.1016/j.oceaneng.2023.114199 
  9. Jeong, J. H., Kim, J. H., & Lee, J. L. (2021). Analysis of wave transmission characteristics on the TTP submerged breakwater using a parabolic-type linear wave deformation model. Journal of Ocean Engineering and Technology, 35(1), 82-90. https://doi.org/10.26748/KSOE.2020.066 
  10. Jiang, L., Zhang, J., Tong, L., Guo, Y., He, R., & Sun, K. (2022). Wave motion and seabed response around a vertical structure sheltered by submerged breakwaters with Fabry-Perot resonance. Journal of Marine Science and Engineering, 10(11), 1797. https://doi.org/10.3390/jmse10111797 
  11. Kaveh, M., & Mesgari, M. S. (2023). Application of meta-heuristic algorithms for training neural networks and deep learning architectures: A comprehensive review. Neural Processing Letters, 55(4), 4519-4622. https://doi.org/10.1007/s11063-022-11055-6 
  12. Khan, M. B., Behera, H., Sahoo, T., & Neelamani, S. (2021). Boundary element method for wave trapping by a multi-layered trapezoidal breakwater near a sloping rigid wall. Meccanica, 56, 317-334. https://doi.org/10.1007/s11012-020-01286-z 
  13. Koley, S., Panduranga, K., Almashan, N., Neelamani, S., & Al-Ragum, A. (2020). Numerical and experimental modeling of water wave interaction with rubble mound offshore porous breakwaters. Ocean Engineering, 218, 108218. https://doi.org/10.1016/j.oceaneng.2020.108218 
  14. Lamas-Pardo, M., Iglesias, G., & Carral, L. (2015). A review of very large floating structures (VLFS) for coastal and offshore uses. Ocean Engineering, 109, 677-690. https://doi.org/10.1016/j.oceaneng.2015.09.012 
  15. Lee, W. D., Jeong, Y. M., & Hur, D. S. (2019). Wave control by tide-adapting submerged breakwater. Journal of Ocean Engineering and Technology, 33(6), 573-580. https://doi.org/10.26748/KSOE.2019.081 
  16. Lee, J., Jeong, Y. M., Kim, J. S., & Hur, D. S. (2022). Analysis of hydraulic characteristics according to the cross-section changes in submerged rigid vegetation. Journal of Ocean Engineering and Technology, 36(5), 326-339. https://doi.org/10.26748/KSOE.2022.028 
  17. Loukili, M., Dutykh, D., Nadjib, C., Ning, D., & Kotrasova, K. (2021). Analytical and numerical investigations applied to study the reflections and transmissions of a rectangular breakwater placed at the bottom of a wave tank. Geosciences, 11(10), 430. https://doi.org/10.3390/geosciences11100430 
  18. Manisha, Kaligatla, R. B., & Sahoo, T. (2019). Effect of bottom undulation for mitigating wave-induced forces on a floating bridge. Wave Motion, 89, 166-184. https://doi.org/10.1016/j.wavemoti.2019.03.007 
  19. Min, E. H., Koo, W., & Kim, M. H. (2023). Wave characteristics over a dual porous submerged breakwater using a fully nonlinear numerical wave tank with a porous domain. Journal of Marine Science and Engineering, 11(9), 1648. https://doi.org/10.3390/jmse11091648 
  20. Ni, Y. L., & Teng, B. (2021a). Bragg resonant reflection of water waves by a Bragg breakwater with porous rectangular bars on a sloping permeable seabed. Ocean Engineering, 235, 109333. https://doi.org/10.1016/j.oceaneng.2021.109333 
  21. Ni, Y. L., & Teng, B. (2021b). Bragg resonant reflection of water waves by a Bragg breakwater with porous trapezoidal bars on a sloping permeable seabed. Applied Ocean Research, 114, 102770. https://doi.org/10.1016/j.apor.2021.102770 
  22. Patil, S. B., & Karmakar, D. (2021). Performance evaluation of submerged breakwater using multi-domain boundary element method. Applied Ocean Research, 114, 102760. https://doi.org/10.1016/j.apor.2021.102760 
  23. Shi, Y., & Eberhart, R. C. (1998). Parameter selection in particle swarm optimization. In Porto, V.W., Saravanan, N., Waagen, D., & Eiben, A.E. (Eds.), Evolutionary Programming VII. EP 1998. Lecture Notes in Computer Science, Vol. 1447. (pp. 591-600). Springe. https://doi.org/10.1007/BFb00408 
  24. Tavana, H., & Khanjani, M. J. (2013). Reducing hydroelastic response of very large floating structure: a literature review. International Journal of Computer Applications, 71(5), 13-17. 
  25. Vijay, K. G., Venkateswarlu, V., & Sahoo, T. (2021). Bragg scattering of surface gravity waves by an array of submerged breakwaters and a floating dock. Wave Motion, 106, 102807. https://doi.org/10.1016/j.wavemoti.2021.102807 
  26. Wang, C. M., Tay, Z. Y., Takagi, K., & Utsunomiya, T. (2010). Literature review of methods for mitigating hydroelastic response of VLFS under wave action. Applied Mechanics Reviews, 63(3), 030802. https://doi.org/10.1115/1.4001690 
  27. Watanabe, E., Wang, C. M., Utsunomiya, T., & Moan, T. (2004). Very large floating structures: applications, analysis and design (Report No. 2004-02). CORE Report, 2, 104-109. 
  28. Zhang, P., Li, Y., Tang, Y., Zhang, R., Li, H., & Gu, J. (2023). Multi-objective optimization and dynamic response predictions of an articulated offshore wind turbine. Ocean Engineering, 273, 114017. https://doi.org/10.1016/j.oceaneng.2023.114017 
  29. Zhu, K., Shi, H., Han, M., & Cao, F. (2022). Layout study of wave energy converter arrays by an artificial neural network and adaptive genetic algorithm. Ocean Engineering, 260, 112072. https://doi.org/10.1016/j.oceaneng.2022.112072