DOI QR코드

DOI QR Code

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Received : 2023.09.27
  • Accepted : 2024.02.21
  • Published : 2024.04.25

Abstract

This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

Keywords

Acknowledgement

The Authors would like to thank Dr. C.S Ramesh, Dean R& D for giving their valuable insights and a special thanks to anonymous reviewers for their critical and educative comments which helped to improve the quality of the manuscript.

References

  1. Abd-Elkader, O.H., Abdelsalam, H., Sakr, M.A., Shaltout, A.A. and Zhang, Q. (2023), "First-principles study of MoS2, WS2, and NbS2 quantum dots: Electronic properties and hydrogen evolution reaction", Crystals, 13(7), 994. https://doi.org/10.3390/cryst13070994.
  2. Ahmed Abdalglil Mustafa, W., Dassenoy, F., Sarno, M. and Senatore, A. (2022), "A review on potentials and challenges of nanolubricants as promising lubricants for electric vehicles", Lubr. Sci., 34(1), 1-29. https://doi.org/10.1002/ls.1568.
  3. Algehyne, E.A., Alrihieli, H.F., Bilal, M., Saeed, A. and Weera, W. (2022), "Numerical approach toward ternary hybrid nanofluid flow using variable diffusion and non-Fourier's concept", ACS Omega, 7(33), 29380-29390. https://doi.org/10.1021/acsomega.2c03634.
  4. Ali, B., Ahammad, N.A., Awan, A.U., Guedri, K., Tag-ElDin, E. M. and Majeed, S. (2022), "Dynamics of rotating micropolar fluid over a stretch surface: the case of linear and quadratic convection significance in thermal management", Nanomaterials, 12(18), 3100. https://doi.org/10.3390/nano12183100.
  5. Alsenafi, A., Beg, O.A., Ferdows, M., Beg, T.A. and Kadir, A. (2021), "Numerical study of nano-biofilm stagnation flow from a nonlinear stretching/shrinking surface with variable nanofluid and bioconvection transport properties", Sci. Rep., 11(1), 9877. https://doi.org/10.1038/s41598-021-88935-9
  6. Amirsom, N.A., Uddin, M.J., Md Basir, M.F., Kadir, A., Beg, O.A. and Md. Ismail, A.I. (2019), "Computation of melting dissipative magnetohydrodynamic nanofluid bioconvection with second-order slip and variable thermophysical properties", Appl. Sci., 9(12), 2493. https://doi.org/10.3390/app9122493.
  7. Awan, A.U., Ahammad, N.A., Shatanawi, W., Allahyani, S.A., Tag-ElDin, E.M., Abbas, N. and Ali, B. (2022), "Significance of magnetic field and Darcy-Forchheimer law on dynamics of Casson-Sutterby nanofluid subject to a stretching circular cylinder", Int. Commun. Heat Mass Transf., 139, 106399. https://doi.org/10.1016/j.icheatmasstransfer.2022.106399.
  8. Awan, A.U., Shah, S.A.A. and Ali, B. (2022), "Bio-convection effects on Williamson nanofluid flow with exponential heat source and motile microorganism over a stretching sheet", Chin. J. Phys., 77, 2795-2810. https://doi.org/10.1016/j.cjph.2022.04.002.
  9. Bazaka, K., Levchenko, I., Lim, J.W.M., Baranov, O., Corbella, C., Xu, S. and Keidar, M. (2019), "MoS2-based nanostructures: synthesis and applications in medicine", J. Phys D: Appl. Phys., 52(18), 183001. https://doi.org/10.1088/1361-6463/ab03b3.
  10. Bas, H. (2023), "Tribological properties of MoS2 particles as lubricant additive on the performance of statically loaded radial journal bearings," Turk. J. Eng., 7(1), 42-48. https://doi.org/10.31127/tuje.1016153.
  11. Bisht, A., and Maheshwari, S. (2023). "Magnetized Sisko nanofluid flow over nonlinear stretching sheet: A computational approach", Numer. Heat Tr. A: Appl., 1-21. https://doi.org/10.1080/10407782.2023.2242613
  12. Choi, S.U.S. and Eastman, J.A. (1995), "Enhancing thermal conductivity of fluids with nanoparticles", Int. Mech. Eng. Cong. Exhibition, San Francisco, United States, November.
  13. Choudhary, R. and Jain, S. (2021), "Temperature jump and concentration slip effects on bioconvection past a vertical porous plate in the existence of nanoparticles and gyrotactic microorganism with inclined MHD", Adv. Nano. Res., 11(1), 27-36. https://doi.org/10.12989/anr.2021.11.1.027.
  14. Cui, J., Jan, A., Farooq, U., Hussain, M. and Khan, W.A. (2022), "Thermal analysis of radiative Darcy-Forchheimer nanofluid flow across an inclined stretching surface", Nanomaterials, 12(23), 4291. https://doi.org/10.3390/nano12234291.
  15. Cui, J., Munir, S., Raies, S.F., Farooq, U., & Razzaq, R. (2022), "Non-similar aspects of heat generation in bioconvection from flat surface subjected to chemically reactive stagnation point flow of Oldroyd-B fluid", Alexandria Eng. J., 61(7), 5397-5411. https://doi.org/10.1016/j.aej.2021.10.056
  16. Ganesh, N.V., Al-Mdallal, Q.M. and Kameswaran, P.K. (2019), "Numerical study of MHD effective Prandtl number boundary layer flow of γ Al2O3/sub> nanofluids past a melting surface", Case Stud. Therm. Eng., 13, 100413. https://doi.org/10.1016/j.csite.2019.100413.
  17. Gharsseldien, Z.M. and Awaad, A. S. (2022), "Maxwell nanofluid flow through a heated vertical channel with peristalsis and magnetic field", Adv. Nano Res., 13(1), 77-86. https://doi.org/10.12989/anr.2022.13.1.077.
  18. Hamid, A., Naveen Kumar, R., Punith Gowda, R.J., Varun Kumar, R.S., Khan, S.U., Ijaz Khan, M. and Muhammad, T. (2021), "Impact of Hall current and homogenous-heterogenous reactions on MHD flow of GO-MoS2/water (H2O)-ethylene glycol (C2H6O2) hybrid nanofluid past a vertical stretching surface", Waves Random Complex Media, 1-18. https://doi.org/10.1080/17455030.2021.1985746.
  19. Huang, X., Shan, H., Chu, W. and Chen, Y. (2022), "Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects", Adv. Nano Res., 12(1), 101-115. https://doi.org/10.12989/anr.2022.12.1.073.
  20. Hussain, S.M. (2022), "Dynamics of ethylene glycol-based graphene and molybdenum disulfide hybrid nanofluid over a stretchable surface with slip conditions", Sci. Rep., 12(1), 1751. https://doi.org/10.1038/s41598-022-05703-z.
  21. Hussain, M., Sharif, H., Khadimallah, M. A., Mouldi, A., Loukil, H., Ali, M. R. and Tounsi, A. (2023), "Shooting method applied to porous rotating disk: Darcy-Forchheimer flow of nanofluid", Adv. Nano Res., 14(3), 295-302. https://doi.org/10.12989/anr.2023.14.3.295.
  22. Jan, A., Mushtaq, M., Farooq, U. and Hussain, M. (2022), "Nonsimilar analysis of magnetized Sisko nanofluid flow subjected to heat generation/absorption and viscous dissipation", J. Magn. Magn., 564, 170153. https://doi.org/10.1016/j.jmmm.2022.170153.
  23. Khan, M. and Shahzad, A. (2013), "On boundary layer flow of a Sisko fluid over a stretching sheet", Quaest. Math., 36(1), 137-151. https://doi.org/10.2989/16073606.2013.779971.
  24. Kobayashi, Y., Morimoto, H., Nakagawa, T., Gonda, K. and Ohuchi, N. (2013), "Preparation of silica-coated gadolinium compound particle colloid solution and its application in imaging", Adv. Nano Res., 1(3), 159-169. https://doi.org/10.12989/anr.2013.1.3.159.
  25. Liu, M., Zhu, H., Wang, Y., Sevencan, C., and Li, B. L. (2021), "Functionalized MoS2-based nanomaterials for cancer phototherapy and other biomedical applications", ACS Mater. Lett., 3(5), 462-496. https://doi.org/10.1021/acsmaterialslett.1c00073
  26. Liu, X., Xu, J., Lai, T. and He, M. (2023), "Investigation on the heat transfer of MHD nanofluids in channel containing porous medium using lattice Boltzmann method", Adv. Nano Res., 15(3), 191. https://doi.org/10.12989/anr.2023.15.3.191.
  27. Maalla, A. and Song, J. (2021), "Computational modeling for nonlinear magneto-electro-elastic responses of smart multiphase symmetric system", Adv. Nano Res., 11(3), 327-337. https://doi.org/10.12989/anr.2021.11.3.327.
  28. Mousavi, S.B., Heris, S.Z. and Estelle, P. (2020), "Experimental comparison between ZnO and MoS2 nanoparticles as additives on performance of diesel oil-based nano lubricant", Sci. Rep., 10(1), 5813. https://doi.org/10.1038/s41598-020-62830-1.
  29. Nagaraja, B., Ajaykumar, A.R., Felicita, A., Pradeep Kumar. and Rudraswamy Ng. (2023), "Non-Darcy-Forchheimer flow of Casson-Williamson nanofluid on melting curved stretching sheet influenced by magnetic dipole", ZAMM, 103(10). https://doi.org/10.1002/zamm.202300134.
  30. Pal, D. and Mandal, G. (2019), "Magnetohydrodynamic heat and mass transfer of Sisko nanofluid past a stretching sheet with nonlinear thermal radiation and convective boundary condition", J. Nanofluids, 8(4). 852-860. https://doi.org/10.1166/jon.2019.1620.
  31. Pavithra, K.M., Hanumagowda, B.N., Varma, S.V.K., Ahammad, N.A., Raju, C.S.K. and Noeiaghdam, S. (2023), "The impacts of shape factors in a chemically reacting two-passage vertical channel filled with kerosene based graphene oxide and MoS2 mixture in a porous medium", Results Eng., 18, 101050. https://doi.org/10.1016/j.rineng.2023.101050.
  32. Pourmadadi, M., Tajiki, A., Hosseini, S.M., Samadi, A., Abdouss, M., Daneshnia, S. and Yazdian, F. (2022), "A comprehensive review of synthesis, structure, properties, and functionalization of MoS2; emphasis on drug delivery, photothermal therapy, and tissue engineering applications", J. Drug Delivery Sci. Tech., 76, 103767. https://doi.org/10.1016/j.jddst.2022.103767.
  33. Raju, C.S.K. and Sandeep, N. (2016), "Heat and mass transfer in 3D non-Newtonian nano and ferro fluids over a bidirectional stretching surface", Int. J. Eng. Res. Afr., 21, 33-51. https://doi.org/10.4028/www.scientific.net/JERA.21.33
  34. Rashed, A.S., Mahmoud, T.A. and Kassem, M.M. (2021), "Behavior of nanofluid with variable brownian and thermal diffusion coefficients adjacent to a moving vertical plate", J. Appl. Comput. Mech., 7(3), 1466-1479. https://doi.org/10.22055/jacm.2021.34852.2483.
  35. Razzaq, R., Farooq, U., Cui, J. and Muhammad, T. (2021), "Non-similar solution for magnetized flow of Maxwell nanofluid over an exponentially stretching surface", Math. Probl. Eng., 2021, 1-10. https://doi.org/10.1155/2021/5539542.
  36. Razzaq, R. and Farooq, U. (2021), "Non-similar forced convection analysis of Oldroyd-B fluid flow over an exponentially stretching surface", Adv. Mech. Eng., 13(7), 16878140211034604.
  37. Rosseland S, (1931), Astrophysik und Atom-Theoretische Grundlagen, Springer, Berlin, Germany, 41-44.
  38. Saidi, M.Z., El Moujahid, C., Pasc, A., Canilho, N., DelgadoSanchez, C., Celzard, A. and Chafik, T. (2021), "Enhanced tribological properties of wind turbine engine oil formulated with flower-shaped MoS2 nano-additives", Colloids Surf. A., 620, 126509. https://doi.org/10.1016/j.colsurfa.2021.126509.
  39. Safari, M., Mohammadimehr, M. and Ashrafi, H. (2021), "Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC", Adv. Nano Res., 10(2), 115-128. https://doi.org/10.12989/anr.2021.10.2.115.
  40. Selmi, A. (2019) "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
  41. Shah, S.A.A., Ahammad, N.A., Ali, B., Guedri, K., Awan, A.U., Gamaoun, F. and Tag-ElDin, E.M. (2022), "Significance of bio-convection, MHD, thermal radiation and activation energy across Prandtl nanofluid flow: A case of stretching cylinder", Int. Commun. Heat Mass Transf., 137, 106299. https://doi.org/10.1016/j.icheatmasstransfer.2022.106299.
  42. Shah, S.A.A., Ahammad, N.A., Din, E.M.T.E., Gamaoun, F., Awan, A.U. and Ali, B. (2022), "Bio-convection effects on prandtl hybrid nanofluid flow with chemical reaction and motile microorganism over a stretching sheet", Nanomaterials, 12(13), 2174. https://doi.org/10.3390/nano12132174.
  43. Shah, S.A.A. and Awan, A.U. (2022), "Significance of magnetized Darcy-Forchheimer stratified rotating Williamson hybrid nanofluid flow: A case of 3D sheet", Int. Commun. Heat Mass Transf., 136, 106214. https://doi.org/10.1016/j.icheatmasstransfer.2022.106214.
  44. Sharif, H., Khadimallah, M.A., Naeem, M.N., Hussain, M., Mahmoud, S.R., Al-Basyouni, K.S. and Tounsi, A. (2021), "The investigation of Magnetohydrodynamic nanofluid flow with Arrhenius energy activation", Adv. Nano Res., 10(5), 437-448. https://doi.org/10.12989/anr.2021.10.5.437.
  45. Sidik N.A.C, Yazid M.N.A.W.M. and Mamat R. (2015), "A review on the application of nanofluids in vehicle engine cooling system". Int. Commun. Heat Mass Transf., 68, 85-90. https://doi.org/10.1016/j.icheatmasstransfer.2015.08.017.
  46. Sivaraj, R., Benazir, A.J., Srinivas, S. and Chamkha, A.J. (2019), "Investigation of cross-diffusion effects on Casson fluid flow in existence of variable fluid properties", Eur. Phys. J. Spec. Top., 228, 35-53. https://doi.org/10.1140/epjst/e2019-800187-3
  47. Sohail, M., Nazir, U., Chu, Y.M., Alrabaiah, H., Al-Kouz, W. and Thounthong, P. (2020), "Computational exploration for radiative flow of Sutterby nanofluid with variable temperature-dependent thermal conductivity and diffusion coefficient", Open Phys., 18(1), 1073-1083. https://doi.org/10.1515/phys-2020-0216.
  48. Sur, U.K. (2014), "Biological green synthesis of gold and silver nanoparticles", Adv. Nano. Res., 2(3), 135-145. https://doi.org/10.12989/anr.2014.2.3.135.
  49. Waqas, H., Farooq, U., Muhammad, T. and Manzoor, U. (2022), "Importance of shape factor in Sisko nanofluid flow considering gold nanoparticles", Alex. Eng. J., 61(5), 3665-3672. https://doi.org/10.1016/j.aej.2021.09.010.
  50. Zhang, Y., Li, C., Jia, D., Zhang, D. and Zhang, X. (2015), "Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding", Int. J. Mach. Tools and Manuf., 99, 19-33. https://doi.org/10.1016/j.ijmachtools.2015.09.003.