Acknowledgement
The Authors would like to thank Dr. C.S Ramesh, Dean R& D for giving their valuable insights and a special thanks to anonymous reviewers for their critical and educative comments which helped to improve the quality of the manuscript.
References
- Abd-Elkader, O.H., Abdelsalam, H., Sakr, M.A., Shaltout, A.A. and Zhang, Q. (2023), "First-principles study of MoS2, WS2, and NbS2 quantum dots: Electronic properties and hydrogen evolution reaction", Crystals, 13(7), 994. https://doi.org/10.3390/cryst13070994.
- Ahmed Abdalglil Mustafa, W., Dassenoy, F., Sarno, M. and Senatore, A. (2022), "A review on potentials and challenges of nanolubricants as promising lubricants for electric vehicles", Lubr. Sci., 34(1), 1-29. https://doi.org/10.1002/ls.1568.
- Algehyne, E.A., Alrihieli, H.F., Bilal, M., Saeed, A. and Weera, W. (2022), "Numerical approach toward ternary hybrid nanofluid flow using variable diffusion and non-Fourier's concept", ACS Omega, 7(33), 29380-29390. https://doi.org/10.1021/acsomega.2c03634.
- Ali, B., Ahammad, N.A., Awan, A.U., Guedri, K., Tag-ElDin, E. M. and Majeed, S. (2022), "Dynamics of rotating micropolar fluid over a stretch surface: the case of linear and quadratic convection significance in thermal management", Nanomaterials, 12(18), 3100. https://doi.org/10.3390/nano12183100.
- Alsenafi, A., Beg, O.A., Ferdows, M., Beg, T.A. and Kadir, A. (2021), "Numerical study of nano-biofilm stagnation flow from a nonlinear stretching/shrinking surface with variable nanofluid and bioconvection transport properties", Sci. Rep., 11(1), 9877. https://doi.org/10.1038/s41598-021-88935-9
- Amirsom, N.A., Uddin, M.J., Md Basir, M.F., Kadir, A., Beg, O.A. and Md. Ismail, A.I. (2019), "Computation of melting dissipative magnetohydrodynamic nanofluid bioconvection with second-order slip and variable thermophysical properties", Appl. Sci., 9(12), 2493. https://doi.org/10.3390/app9122493.
- Awan, A.U., Ahammad, N.A., Shatanawi, W., Allahyani, S.A., Tag-ElDin, E.M., Abbas, N. and Ali, B. (2022), "Significance of magnetic field and Darcy-Forchheimer law on dynamics of Casson-Sutterby nanofluid subject to a stretching circular cylinder", Int. Commun. Heat Mass Transf., 139, 106399. https://doi.org/10.1016/j.icheatmasstransfer.2022.106399.
- Awan, A.U., Shah, S.A.A. and Ali, B. (2022), "Bio-convection effects on Williamson nanofluid flow with exponential heat source and motile microorganism over a stretching sheet", Chin. J. Phys., 77, 2795-2810. https://doi.org/10.1016/j.cjph.2022.04.002.
- Bazaka, K., Levchenko, I., Lim, J.W.M., Baranov, O., Corbella, C., Xu, S. and Keidar, M. (2019), "MoS2-based nanostructures: synthesis and applications in medicine", J. Phys D: Appl. Phys., 52(18), 183001. https://doi.org/10.1088/1361-6463/ab03b3.
- Bas, H. (2023), "Tribological properties of MoS2 particles as lubricant additive on the performance of statically loaded radial journal bearings," Turk. J. Eng., 7(1), 42-48. https://doi.org/10.31127/tuje.1016153.
- Bisht, A., and Maheshwari, S. (2023). "Magnetized Sisko nanofluid flow over nonlinear stretching sheet: A computational approach", Numer. Heat Tr. A: Appl., 1-21. https://doi.org/10.1080/10407782.2023.2242613
- Choi, S.U.S. and Eastman, J.A. (1995), "Enhancing thermal conductivity of fluids with nanoparticles", Int. Mech. Eng. Cong. Exhibition, San Francisco, United States, November.
- Choudhary, R. and Jain, S. (2021), "Temperature jump and concentration slip effects on bioconvection past a vertical porous plate in the existence of nanoparticles and gyrotactic microorganism with inclined MHD", Adv. Nano. Res., 11(1), 27-36. https://doi.org/10.12989/anr.2021.11.1.027.
- Cui, J., Jan, A., Farooq, U., Hussain, M. and Khan, W.A. (2022), "Thermal analysis of radiative Darcy-Forchheimer nanofluid flow across an inclined stretching surface", Nanomaterials, 12(23), 4291. https://doi.org/10.3390/nano12234291.
- Cui, J., Munir, S., Raies, S.F., Farooq, U., & Razzaq, R. (2022), "Non-similar aspects of heat generation in bioconvection from flat surface subjected to chemically reactive stagnation point flow of Oldroyd-B fluid", Alexandria Eng. J., 61(7), 5397-5411. https://doi.org/10.1016/j.aej.2021.10.056
- Ganesh, N.V., Al-Mdallal, Q.M. and Kameswaran, P.K. (2019), "Numerical study of MHD effective Prandtl number boundary layer flow of γ Al2O3/sub> nanofluids past a melting surface", Case Stud. Therm. Eng., 13, 100413. https://doi.org/10.1016/j.csite.2019.100413.
- Gharsseldien, Z.M. and Awaad, A. S. (2022), "Maxwell nanofluid flow through a heated vertical channel with peristalsis and magnetic field", Adv. Nano Res., 13(1), 77-86. https://doi.org/10.12989/anr.2022.13.1.077.
- Hamid, A., Naveen Kumar, R., Punith Gowda, R.J., Varun Kumar, R.S., Khan, S.U., Ijaz Khan, M. and Muhammad, T. (2021), "Impact of Hall current and homogenous-heterogenous reactions on MHD flow of GO-MoS2/water (H2O)-ethylene glycol (C2H6O2) hybrid nanofluid past a vertical stretching surface", Waves Random Complex Media, 1-18. https://doi.org/10.1080/17455030.2021.1985746.
- Huang, X., Shan, H., Chu, W. and Chen, Y. (2022), "Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects", Adv. Nano Res., 12(1), 101-115. https://doi.org/10.12989/anr.2022.12.1.073.
- Hussain, S.M. (2022), "Dynamics of ethylene glycol-based graphene and molybdenum disulfide hybrid nanofluid over a stretchable surface with slip conditions", Sci. Rep., 12(1), 1751. https://doi.org/10.1038/s41598-022-05703-z.
- Hussain, M., Sharif, H., Khadimallah, M. A., Mouldi, A., Loukil, H., Ali, M. R. and Tounsi, A. (2023), "Shooting method applied to porous rotating disk: Darcy-Forchheimer flow of nanofluid", Adv. Nano Res., 14(3), 295-302. https://doi.org/10.12989/anr.2023.14.3.295.
- Jan, A., Mushtaq, M., Farooq, U. and Hussain, M. (2022), "Nonsimilar analysis of magnetized Sisko nanofluid flow subjected to heat generation/absorption and viscous dissipation", J. Magn. Magn., 564, 170153. https://doi.org/10.1016/j.jmmm.2022.170153.
- Khan, M. and Shahzad, A. (2013), "On boundary layer flow of a Sisko fluid over a stretching sheet", Quaest. Math., 36(1), 137-151. https://doi.org/10.2989/16073606.2013.779971.
- Kobayashi, Y., Morimoto, H., Nakagawa, T., Gonda, K. and Ohuchi, N. (2013), "Preparation of silica-coated gadolinium compound particle colloid solution and its application in imaging", Adv. Nano Res., 1(3), 159-169. https://doi.org/10.12989/anr.2013.1.3.159.
- Liu, M., Zhu, H., Wang, Y., Sevencan, C., and Li, B. L. (2021), "Functionalized MoS2-based nanomaterials for cancer phototherapy and other biomedical applications", ACS Mater. Lett., 3(5), 462-496. https://doi.org/10.1021/acsmaterialslett.1c00073
- Liu, X., Xu, J., Lai, T. and He, M. (2023), "Investigation on the heat transfer of MHD nanofluids in channel containing porous medium using lattice Boltzmann method", Adv. Nano Res., 15(3), 191. https://doi.org/10.12989/anr.2023.15.3.191.
- Maalla, A. and Song, J. (2021), "Computational modeling for nonlinear magneto-electro-elastic responses of smart multiphase symmetric system", Adv. Nano Res., 11(3), 327-337. https://doi.org/10.12989/anr.2021.11.3.327.
- Mousavi, S.B., Heris, S.Z. and Estelle, P. (2020), "Experimental comparison between ZnO and MoS2 nanoparticles as additives on performance of diesel oil-based nano lubricant", Sci. Rep., 10(1), 5813. https://doi.org/10.1038/s41598-020-62830-1.
- Nagaraja, B., Ajaykumar, A.R., Felicita, A., Pradeep Kumar. and Rudraswamy Ng. (2023), "Non-Darcy-Forchheimer flow of Casson-Williamson nanofluid on melting curved stretching sheet influenced by magnetic dipole", ZAMM, 103(10). https://doi.org/10.1002/zamm.202300134.
- Pal, D. and Mandal, G. (2019), "Magnetohydrodynamic heat and mass transfer of Sisko nanofluid past a stretching sheet with nonlinear thermal radiation and convective boundary condition", J. Nanofluids, 8(4). 852-860. https://doi.org/10.1166/jon.2019.1620.
- Pavithra, K.M., Hanumagowda, B.N., Varma, S.V.K., Ahammad, N.A., Raju, C.S.K. and Noeiaghdam, S. (2023), "The impacts of shape factors in a chemically reacting two-passage vertical channel filled with kerosene based graphene oxide and MoS2 mixture in a porous medium", Results Eng., 18, 101050. https://doi.org/10.1016/j.rineng.2023.101050.
- Pourmadadi, M., Tajiki, A., Hosseini, S.M., Samadi, A., Abdouss, M., Daneshnia, S. and Yazdian, F. (2022), "A comprehensive review of synthesis, structure, properties, and functionalization of MoS2; emphasis on drug delivery, photothermal therapy, and tissue engineering applications", J. Drug Delivery Sci. Tech., 76, 103767. https://doi.org/10.1016/j.jddst.2022.103767.
- Raju, C.S.K. and Sandeep, N. (2016), "Heat and mass transfer in 3D non-Newtonian nano and ferro fluids over a bidirectional stretching surface", Int. J. Eng. Res. Afr., 21, 33-51. https://doi.org/10.4028/www.scientific.net/JERA.21.33
- Rashed, A.S., Mahmoud, T.A. and Kassem, M.M. (2021), "Behavior of nanofluid with variable brownian and thermal diffusion coefficients adjacent to a moving vertical plate", J. Appl. Comput. Mech., 7(3), 1466-1479. https://doi.org/10.22055/jacm.2021.34852.2483.
- Razzaq, R., Farooq, U., Cui, J. and Muhammad, T. (2021), "Non-similar solution for magnetized flow of Maxwell nanofluid over an exponentially stretching surface", Math. Probl. Eng., 2021, 1-10. https://doi.org/10.1155/2021/5539542.
- Razzaq, R. and Farooq, U. (2021), "Non-similar forced convection analysis of Oldroyd-B fluid flow over an exponentially stretching surface", Adv. Mech. Eng., 13(7), 16878140211034604.
- Rosseland S, (1931), Astrophysik und Atom-Theoretische Grundlagen, Springer, Berlin, Germany, 41-44.
- Saidi, M.Z., El Moujahid, C., Pasc, A., Canilho, N., DelgadoSanchez, C., Celzard, A. and Chafik, T. (2021), "Enhanced tribological properties of wind turbine engine oil formulated with flower-shaped MoS2 nano-additives", Colloids Surf. A., 620, 126509. https://doi.org/10.1016/j.colsurfa.2021.126509.
- Safari, M., Mohammadimehr, M. and Ashrafi, H. (2021), "Free vibration of electro-magneto-thermo sandwich Timoshenko beam made of porous core and GPLRC", Adv. Nano Res., 10(2), 115-128. https://doi.org/10.12989/anr.2021.10.2.115.
- Selmi, A. (2019) "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
- Shah, S.A.A., Ahammad, N.A., Ali, B., Guedri, K., Awan, A.U., Gamaoun, F. and Tag-ElDin, E.M. (2022), "Significance of bio-convection, MHD, thermal radiation and activation energy across Prandtl nanofluid flow: A case of stretching cylinder", Int. Commun. Heat Mass Transf., 137, 106299. https://doi.org/10.1016/j.icheatmasstransfer.2022.106299.
- Shah, S.A.A., Ahammad, N.A., Din, E.M.T.E., Gamaoun, F., Awan, A.U. and Ali, B. (2022), "Bio-convection effects on prandtl hybrid nanofluid flow with chemical reaction and motile microorganism over a stretching sheet", Nanomaterials, 12(13), 2174. https://doi.org/10.3390/nano12132174.
- Shah, S.A.A. and Awan, A.U. (2022), "Significance of magnetized Darcy-Forchheimer stratified rotating Williamson hybrid nanofluid flow: A case of 3D sheet", Int. Commun. Heat Mass Transf., 136, 106214. https://doi.org/10.1016/j.icheatmasstransfer.2022.106214.
- Sharif, H., Khadimallah, M.A., Naeem, M.N., Hussain, M., Mahmoud, S.R., Al-Basyouni, K.S. and Tounsi, A. (2021), "The investigation of Magnetohydrodynamic nanofluid flow with Arrhenius energy activation", Adv. Nano Res., 10(5), 437-448. https://doi.org/10.12989/anr.2021.10.5.437.
- Sidik N.A.C, Yazid M.N.A.W.M. and Mamat R. (2015), "A review on the application of nanofluids in vehicle engine cooling system". Int. Commun. Heat Mass Transf., 68, 85-90. https://doi.org/10.1016/j.icheatmasstransfer.2015.08.017.
- Sivaraj, R., Benazir, A.J., Srinivas, S. and Chamkha, A.J. (2019), "Investigation of cross-diffusion effects on Casson fluid flow in existence of variable fluid properties", Eur. Phys. J. Spec. Top., 228, 35-53. https://doi.org/10.1140/epjst/e2019-800187-3
- Sohail, M., Nazir, U., Chu, Y.M., Alrabaiah, H., Al-Kouz, W. and Thounthong, P. (2020), "Computational exploration for radiative flow of Sutterby nanofluid with variable temperature-dependent thermal conductivity and diffusion coefficient", Open Phys., 18(1), 1073-1083. https://doi.org/10.1515/phys-2020-0216.
- Sur, U.K. (2014), "Biological green synthesis of gold and silver nanoparticles", Adv. Nano. Res., 2(3), 135-145. https://doi.org/10.12989/anr.2014.2.3.135.
- Waqas, H., Farooq, U., Muhammad, T. and Manzoor, U. (2022), "Importance of shape factor in Sisko nanofluid flow considering gold nanoparticles", Alex. Eng. J., 61(5), 3665-3672. https://doi.org/10.1016/j.aej.2021.09.010.
- Zhang, Y., Li, C., Jia, D., Zhang, D. and Zhang, X. (2015), "Experimental evaluation of the lubrication performance of MoS2/CNT nanofluid for minimal quantity lubrication in Ni-based alloy grinding", Int. J. Mach. Tools and Manuf., 99, 19-33. https://doi.org/10.1016/j.ijmachtools.2015.09.003.