DOI QR코드

DOI QR Code

Acoustic emission characteristics under the influence of different stages of damage in granite specimens

  • Jong-Won Lee (Research Institute of Industrial Technology, Pusan National University) ;
  • Tae-Min Oh (Department of Civil and Environmental Engineering, Pusan National University) ;
  • Hyunwoo Kim (Mineral Exploration and Mining Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Min-Jun Kim (Deep Subsurface Storage & Disposal Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Ki-Il Song (Department of Civil Engineering, Inha University)
  • 투고 : 2023.11.27
  • 심사 : 2024.03.31
  • 발행 : 2024.04.25

초록

The acoustic emission (AE) technique is utilized to estimate the rock failure status in underground spaces. Understanding the AE characteristics under loading conditions is essential to ensure the reliability of AE monitoring. The AE characteristics depend on the material properties (p-wave velocity, density, UCS, and Young's modulus) and damage stages (stress ratio) of the target rock mass. In this study, two groups of granite specimens (based on the p-wave velocity regime) were prepared to explore the effect of material properties on AE characteristics. Uniaxial compressive loading tests with an AE measurement system were performed to investigate the effect of the rock properties using AE indices (count index, energy index, and amplitude index). The test results were analyzed according to three damage stages classified by the stress ratio of the specimens. Count index was determined to be the most suitable AE index for evaluating rock mass stability.

키워드

과제정보

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No. NRF-2022R1I1A3065299) and by the Brain Korea 21 FOUR Project in the Education & Research Center for Infrastructure of Smart Ocean City (i-SOC Center) (Grant No. 4199990614525).

참고문헌

  1. Aker, E., Kuhn, D., Vavrycuk, V., Soldal, M. and Oye, V. (2014), "Experimental investigation of acoustic emissions and their moment tensors in rock during failure", Int. J. Rock. Mech. Min. Sci., 70, 286-295. https://doi.org/10.1016/j.ijrmms.2014.05.003.
  2. ASTM D2938 (2002), Standard test method for unconfined compressive strength of intact rock core specimens, ASTM International, West Conshohocken, PA, USA.
  3. Bieniawski, Z.T. and Bernede, M.J. (1979), "Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determining deformability of rock materials in uniaxial compression", Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 16(2), 138-140. https://doi.org/10.1016/0148-9062(79)91451-7.
  4. Brown, E.T. (1981), ISRM suggested methods. Rock characterization testing and monitoring, Pergamon Press, Oxford, UK.
  5. Cao, A., Jing, G., Ding, Y.L. and Liu, S. (2019), "Mining-induced static and dynamic loading rate effect on rock damage and acoustic emission characteristic under uniaxial compression", Saf. Sci., 116, 86-96. https://doi.org/10.1016/j.ssci.2019.03.003.
  6. Cartwright-Taylor, A., Main, I.G., Butler, I.B., Fusseis, F., Flynn, M. and King, A. (2020), "Catastrophic failure: how and when? Insights from 4-D in situ x-ray microtomography", J. Geophys. Res. Solid Earth, 125(8), e2020JB019642. https://doi.org/10.1029/2020JB019642.
  7. Chang, S.H., Lee, C.I. and Lee, Y.K. (2007), "An experimental damage model and its application to the evaluation of the excavation damage zone", Rock Mech. Rock Eng., 40(3), 245-285. https://doi.org/10.1007/s00603-006-0113-8.
  8. Chang, S.H. and Lee, C.I. (2004), "Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission", Int. J. Rock Mech. Min. Sci., 41(7), 1069-1086. https://doi.org/10.1016/j.ijrmms.2004.04.006.
  9. Chawre, B. (2018), "Correlations between ultrasonic pulse wave velocities and rock properties of quartz-mica schist", J. Rock Mech. Geotech. Eng., 10(3), 594-602. https://doi.org/10.1016/j.jrmge.2018.01.006.
  10. Chen, B., Liu, J. and Wu, K. (2005), "Electrical responses of carbon fiber reinforced cementitious composites to monotonic and cyclic loading", Cem. Concr. Res., 35(11), 2183-2191. https://doi.org/10.1016/j.cemconres.2005.02.004.
  11. Costin, L.S. (1997), Site selection and characterization processes for deep geologic disposal of high level nuclear waste, Sandia National Laboratories, Alberquerque, NM, USA.
  12. Fairhurst, C. (2004), "Nuclear waste disposal and rock mechanics: contributions of the Underground Research Laboratory (URL), Pinawa, Manitoba, Canada", Int. J. Rock Mech. Min. Sci., 41(8), 1221-1227. https://doi.org/10.1016/j.ijrmms.2004.09.001.
  13. Fu, B. and Tang, C.A. (2021), "Acoustic emission characteristics of marble under uniaxial cyclic loading", Geomech. Eng., 27(4), 347-359. https://doi.org/10.12989/gae.2021.27.4.347.
  14. Gong, Y., Song, Z., He, M., Gong, W. and Ren, F. (2017), "Precursory waves and eigenfrequencies identified from acoustic emission data based on singular spectrum analysis and laboratory rock-burst experiments", Int. J. Rock Mech. Min. Sci., 91, 155-169. https://doi.org/10.1016/j.ijrmms.2016.11.020.
  15. Granger, S., Loukili, A., Pijaudier-Cabot, G. and Chanvillard, G. (2007), "Experimental characterization of the self-healing of cracks in an ultra high performance cementitious material: Mechanical tests and acoustic emission analysis", Cement Concrete Res., 37(4), 519-527. https://doi.org/10.1016/j.cemconres.2006.12.005.
  16. Grosse, C.U. and Ohtsu, M. (2008), Acoustic emission testing, Springer, Heidelberg, Germany.
  17. Gu, Q., Ma, Q., Tan, Y., Jia, Z., Zhao, Z. and Huang, D. (2019), "Acoustic emission characteristics and damage model of cement mortar under uniaxial compression", Constr. Build. Mater., 213, 377-385. https://doi.org/10.1016/j.conbuildmat.2019.04.090.
  18. Howard, A.J. (1991), "Request for information ITA study of non-destructive methods of inspecting and testing tunnel linings", Tunn. Undergr. Space Tech., 6(4), 469. https://doi.org/10.1016/0886-7798(91)90103-B.
  19. Hudson, J.A., Cosgrove, J.W., Kemppainen, K. and Johansson, E. (2011), "Faults in crystalline rock and the estimation of their mechanical properties at the Olkiluoto site, western Finland", Eng. Geol., 117(3-4), 246-258. https://doi.org/10.1016/j.enggeo.2010.11.004.
  20. Ishida, T., Labuz, J.F., Manthei, G., Meredith, P.G., Nasseri, M.H.B., Shin, K., Yokoyama, T. and Zang, A. (2017), "ISRM suggested method for laboratory acoustic emission monitoring", Rock Mech. Rock Eng., 50(3), 665-674. https://doi.org/10.1007/s00603-016-1165-z.
  21. Kim, J.S., Lee, K.S., Cho, W.J., Choi, H.J. and Cho, G.C. (2015), "A comparative evaluation of stress-strain and acoustic emission methods for quantitative damage assessments of brittle rock", Rock Mech. Rock Eng., 48(2), 495-508. https://doi.org/10.1007/s00603-014-0590-0.
  22. Kim, M.J., Lee, S.R., Yoon, S., Jeon, J.S. and Kim, M.S. (2018), "Optimal initial condition of a bentonite buffer with regard to thermal behavior in a high-level radioactive waste repository", Comput. Geotech., 104, 109-117. https://doi.org/10.1016/j.compgeo.2018.08.011.
  23. Lee, J.W., Kim, H. and Oh, T.M. (2020), "Acoustic emission characteristics during uniaxial compressive loading for concrete specimens according to sand content ratio", KSCE J. Civ. Eng., 24(9), 2808-2823. https://doi.org/10.1007/s12205-020-5697-0.
  24. Lei, X., Funatsu, T., Ma, S. and Liu, L. (2016), "A laboratory acoustic emission experiment and numerical simulation of rock fracture driven by a high-pressure fluid source", J. Rock Mech. Geotech. Eng., 8(1), 27-34. https://doi.org/10.1016/j.jrmge.2015.02.010.
  25. Li, H., Shen, R., Li, D., Jia, H., Li, T., Chen, T. and Hou, Z. (2019), "Acoustic emission multi-parameter analysis of dry and saturated sandstone with cracks under uniaxial compression", Energies, 12(10), 1959. https://doi.org/10.3390/en12101959.
  26. Li, C.J., Lou, P.J. and Xu, Y. (2022), "Damage characterization of hard-brittle rocks under cyclic loading based on energy dissipation and acoustic emission characteristics", Geomech. Eng., 31(4), 365-373. https://doi.org/10.12989/gae.2022.31.4.365.
  27. Meng, F., Wong, L.N.Y., Zhou, H., Yu, J. and Cheng, G. (2019), "Shear rate effects on the post-peak shear behaviour and acoustic emission characteristics of artificially split granite joints", Rock Mech. Rock Eng., 52(7), 2155-2174. https://doi.org/10.1007/s00603-018-1722-8.
  28. Mo, C., Zhao, J. and Zhang, D. (2023), "Mode I microscopic cracking process of granite considering the criticality of failure", J. Geophys. Res. Solid Earth, 128(10), e2023JB027040. https://doi.org/10.1029/2023JB027040.
  29. Nejati, H.R. and Ghazvinian, A. (2014), "Brittleness effect on rock fatigue damage evolution", Rock Mech. Rock Eng., 47(5), 1839-1848. https://doi.org/10.1007/s00603-013-0486-4.
  30. Nicksiar, M. and Martin, C.D. (2012), "Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks", Rock Mech. Rock Eng., 45(4), 607-617. https://doi.org/10.1007/s00603-012-0221-6.
  31. Niu, Y., Wang, J., Hu, Y., Wang, G. and Liu, B. (2023), "Time-frequency domain characteristics of intact and cracked red sandstone based on acoustic emission waveforms", Geomech. Eng., 34(1), 1-15. https://doi.org/10.12989/gae.2023.34.1.001.
  32. Oh, T.M., Kim, M.K., Lee, J.W., Kim, H. and Kim, M.J. (2020), "Experimental investigation on effective distances of acoustic emission in concrete structures", Appl. Sci., 10(17), 6051. https://doi.org/10.3390/app10176051.
  33. Petruzalek, M., Lokajicek, T., Svitek, T., Jechumtalova, Z., Kolar, P. and Sileny, J. (2019), "Fracturing of migmatite monitored by acoustic emission and ultrasonic sounding", Rock Mech. Rock Eng., 52, 47-59. https://doi.org/10.3390/app10176051.
  34. Siren, T., Hakala, M., Valli, J., Kantia, P., Hudson, J.A. and Johansson, E. (2015), "In situ strength and failure mechanisms of migmatitic gneiss and pegmatitic granite at the nuclear waste disposal site in Olkiluoto, Western Finland", Int. J. Rock Mech. Min. Sci., 79, 135-148. https://doi.org/10.1016/j.ijrmms.2015.08.012.
  35. Sun, B., Hou, S., Xie, J. and Zeng, S. (2019), "Failure prediction of two types of rocks based on acoustic emission characteristics", Adv. Civ. Eng., 2019, 5028489. https://doi.org/10.1155/2019/5028489.
  36. Stoeckher, F., Molenda, M., Brenne, S. and Alber, M. (2015), "Fracture propagation in sandstone and slate-Laboratory experiments, acoustic emissions and fracture mechanics", J. Rock Mech. Geotech. Eng., 7(3), 237-249. https://doi.org/10.1016/j.jrmge.2015.03.011.
  37. Tham, L.G., Liu, H., Tang, C.A., Lee, P.K.K. and Tsui, Y. (2005), "On tension failure of 2-D rock specimens and associated acoustic emission", Rock Mech. Rock Eng., 38(1), 1-19. https://doi.org/10.1007/s00603-004-0031-6.
  38. Tiryaki, B. (2008), "Predicting intact rock strength for mechanical excavation using multivariate statistics, artificial neural networks, and regression trees", Eng. Geol., 99(1-2), 51-60. https://doi.org/10.1016/j.enggeo.2008.02.003.
  39. Vilhelm, J., Rudajev, V., Lokajicek, T. and Veverka, J. (2008), "Correlation analysis of the ultrasonic emission from loaded rock samples-the study of interaction of microcracking nucleation centres", Rock Mech. Rock Eng., 41(5), 695-714. https://doi.org/10.1007/s00603-006-0114-7.
  40. Wang, J., Chen, L., Su, R. and Zhao, X. (2018), "The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: planning, site selection, site characterization and in situ tests", J. Rock Mech. Geotech. Eng., 10(3), 411-435. https://doi.org/10.1016/j.jrmge.2018.03.002.
  41. Wang, Q., Chen, J., Guo, J., Luo, Y., Wang, H. and Liu, Q. (2019), "Acoustic emission characteristics and energy mechanism in karst limestone failure under uniaxial and triaxial compression", Bull. Eng. Geol. Environ., 78(3), 1427-1442. https://doi.org/10.1007/s10064-017-1189-y.
  42. Wang, Z., Wang, J., Yang, S., Li, L. and Li, M. (2020), "Failure behaviour and acoustic emission characteristics of different rocks under uniaxial compression", J. Geophys. Eng., 17(1), 76-88. https://doi.org/10.1093/jge/gxz092.
  43. Wu, K., Chen, B. and Yao, W. (2000), "Study on the AE characteristics of fracture process of mortar, concrete and steel-fiber-reinforced concrete beams", Cement Concrete Res., 30(9), 1495-1500. https://doi.org/10.1016/S0008-8846(00)00358-6.
  44. Xue, L., Qin, S., Sun, Q., Wang, Y., Lee, L.M. and Li, W. (2014), "A study on crack damage stress thresholds of different rock types based on uniaxial compression tests", Rock Mech. Rock Eng., 47(4), 1183-1195. https://doi.org/10.1007/s00603-013-0479-3.
  45. Yang, D., Zhang, D., Niu, S., Dang, Y., Feng, W. and Ge, S. (2018), "Experiment and study on mechanical property of sandstone post-peak under the cyclic loading and unloading", Geotech. Geol. Eng., 36(3), 1609-1620. https://doi.org/10.1007/s10706-017-0414-6.
  46. Zhang, G., Li, H., Wang, M., Li, X., Wang, Z. and Deng, S. (2019), "Crack-induced acoustic emission and anisotropy variation of brittle rocks containing natural fractures", J. Geophys. Eng., 16(3), 599-610. https://doi.org/10.1093/jge/gxz031.
  47. Zhang, Q., Liu, C., Duan, K., Zhang, Z. and Xiang, W. (2020a), "True three-dimensional geomechanical model tests for stability analysis of surrounding rock during the excavation of a deep underground laboratory", Rock Mech. Rock Eng., 53(2), 517-537. https://doi.org/10.1007/s00603-019-01927-0.
  48. Zhang, Y., Wu, W., Yao, X., Liang, P., Sun, L. and Liu, X. (2020b), "Study on spectrum characteristics and clustering of acoustic emission signals from rock fracture", Circ. Sys. Sig. Process., 39(2), 1133-1145. https://doi.org/10.1007/s00034-019-01168-0.
  49. Zhang, Z., Hu, L., Liu, T. and Zheng, H. (2021), "Cluster and information entropy analysis of acoustic emission during rock failure process", Geomech. Eng., 25(2), 135-142. https://doi.org/10.12989/gae.2021.25.2.135.
  50. Zhao, X.G., Cai, M., Wang, J. and Ma, L.K. (2013), "Damage stress and acoustic emission characteristics of the Beishan granite", Int. J. Rock Mech. Min. Sci., 64, 258-269. https://doi.org/10.1016/j.ijrmms.2013.09.003.
  51. Zhu, D., Jing, H., Yin, Q., Ding, S. and Zhang, J. (2020), "Mechanical characteristics of granite after heating and water-cooling cycles", Rock Mech. Rock Eng., 53(4), 2015-2025. https://doi.org/10.1007/s00603-019-01991-6.
  52. Zhukov, V.S. and Kuzmin, Y.O. (2020), "The influence of fracturing of the rocks and model materials on p-wave propagation velocity: experimental studies", Izv. Phys. Solid Earth, 56, 470-480. https://doi.org/10.1134/S1069351320040102.