DOI QR코드

DOI QR Code

Pile tip grouting diffusion height prediction considering unloading effect based on cavity reverse expansion model

  • Jiaqi Zhang (Department of Geotechnical Engineering, Tongji University) ;
  • Chunfeng Zhao (Department of Geotechnical Engineering, Tongji University) ;
  • Cheng Zhao (Department of Geotechnical Engineering, Tongji University) ;
  • Yue Wu (School of Civil Engineering, Chongqing Jiaotong University) ;
  • Xin Gong (Institute of Civil Engineering, Jinggangshan University)
  • Received : 2022.09.18
  • Accepted : 2023.12.30
  • Published : 2024.04.25

Abstract

The accurate prediction of grouting upward diffusion height is crucial for estimating the bearing capacity of tip-grouted piles. Borehole construction during the installation of bored piles induces soil unloading, resulting in both radial stress loss in the surrounding soil and an impact on grouting fluid diffusion. In this study, a modified model is developed for predicting grout diffusion height. This model incorporates the classical rheological equation of power-law cement grout and the cavity reverse expansion model to account for different degrees of unloading. A series of single-pile tip grouting and static load tests are conducted with varying initial grouting pressures. The test results demonstrate a significant effect of vertical grout diffusion on improving pile lateral friction resistance and bearing capacity. Increasing the grouting pressure leads to an increase in the vertical height of the grout. A comparison between the predicted values using the proposed model and the actual measured results reveals a model error ranging from -12.3% to 8.0%. Parametric analysis shows that grout diffusion height increases with an increase in the degree of unloading, with a more pronounced effect observed at higher grouting pressures. Two case studies are presented to verify the applicability of the proposed model. Field measurements of grout diffusion height correspond to unloading ratios of 0.68 and 0.71, respectively, as predicted by the model. Neglecting the unloading effect would result in a conservative estimate.

Keywords

Acknowledgement

The authors are deeply grateful for the financial support of the National Natural Science Foundation of China (Grant Nos. 42377151, and 02302340428), the Natural Science Foundation of Chongqing (CSTB2023NSCQ-BHX0149), the China Postdoctoral Science Foundation (2023MD734112). The comments of the anonymous reviewers have improved the quality of this paper and are also gratefully acknowledged.

References

  1. Al-Ajmi, A.M. and Zimmerman, R.W. (2006), "Stability analysis of vertical boreholes using the Mogi-Coulomb failure criterion", Int. J. Rock Mech. Min. Sci., 43(8), 1200-1211. https://doi.org/10.1016/j.ijrmms.2006.04.001.
  2. Amadei, B. and Savage, W.Z. (2001), "An analytical solution for transient flow of Bingham viscoplastic materials in rock fractures", Int. J. Rock Mech. Min. Sci., 38(2), 285-296. https://doi.org/10.1016/s1365-1609(00)00080-0.
  3. Bouchelaghem, F. and Almosni, A. (2003), "Experimental determination of the longitudinal dispersivity during the injection of a micro-cement grout in a one-dimensional soil column", Transport in Porous Media, 52(1), 67-94. https://doi.org/10.1023/a:1022376225651
  4. Cai, J., Wang, Y.Y., Wang, X.H. and Yan, H.W. (2012), "Evaluation on bearing capacity improvement of cast-in-situ bored piles using post-grouting technology", Proceedings of the International Conference on Civil, Architectural and Hydraulic Engineering (ICCAHE 2012), August 10-12, Zhangjiajie, Hunan, China.
  5. Chalmovsky, J. and Mica, L. (2020), "Prediction of the load-displacement response of ground anchors via the load-transfer method", Geomech. Eng., 20(4), 359-370. https://doi.org/10.12989/gae.2020.20.4.359.
  6. Chupin, O., Saiyouri, N. and Hicher, P.Y. (2009), "Modeling of a semi-real injection test in sand", Comput.Geotech., 36(6), 1039-1048. https://doi.org/10.1016/j.compgeo.2009.03.014.
  7. Cui, Y.L., Qi, C.G., Zheng, J.H., Wang, X.Q. and Zhang, S.M. (2021), "Field test research on post-grouting effect for super-long cast-in-place bored pile in thick soft foundation", Geotech. Geol. Eng., 39(7), 4833-4842. https://doi.org/10.1007/s10706-021-01796-x
  8. Dai, G.L., Wan, Z.H., Zhu, M.X. and Gong, W.M. (2018), "The model of grout migration height for pressured grouting at pile tip based on time-dependent behavior of viscosity and its engineering application", Rock Soil Mech., 39(8), 2941-2950. https://doi.org/10.16285/j.rsm.2018.0588. (in Chinese)
  9. El Jirari, S., Wong, H., Deleruyelle, F., Branque, D., Berthoz, N. and Leo, C. (2020), "Analytical modelling of a tunnel accounting for elastoplastic unloading and reloading with reverse yielding and plastic flow", Comput. Geotech., 121, 103441. https://doi.org/10.1016/j.compgeo.2020.103441.
  10. El-Kelesh, A.M., Matsui, T. and Tokida, K. (2007), "Field investigation into effectiveness of shallow treatment by compaction grouting", Proceedings of the 17th International Offshore and Polar Engineering Conference (ISOPE 2007), July 01-06, Lisbon, Portugal.
  11. Fang, K., Zhang, Z.M. and Yang, Q.D. (2014), "Response evaluation of axially loaded grouted drilled shaft", Mar. Georesour. Geotec., 32(2), 123-134, https://doi.org/10.1080/1064119x.2012.710713.
  12. Fang, K., Zhao, T.B., Tan, Y.L. and Qiu, Y. (2019), "Prediction of grouting penetration height along the shaft of base grouted pile", J. Mar. Sci. Eng., 7(7), 212. https://doi.org/10.3390/jmse7070212.
  13. Filz, G.M., Adams, T. and Davidson, R.R. (2004), "Stability of long trenches in sand supported by bentonite-water slurry", J. Geotech. Geoenviron. Eng., 130(9), 915-921. https://doi.org/10.1061/(asce)1090-0241(2004)130:9(915).
  14. Fu, Y.B., Wang, X.L., Zhang, S.Z. and Yang, Y. (2019), "Modelling of permeation grouting considering grout self-gravity effect: theoretical and experimental study", Adv. Mater. Sci. Eng., 2019, 7968240. https://doi.org/10.1155/2019/7968240.
  15. Gholami, R., Moradzadeh, A., Rasouli, V. and Hanachi, J. (2014), "Practical application of failure criteria in determining safe mud weight windows in drilling operations", J. Rock Mech. Geotech. Eng., 6(1), 13-25. https://doi.org/10.1016/j.jrmge.2013.11.002
  16. Hou, F.J., Sun, K.G., Wu, Q.D., Xu, W.P. and Ren, S.J. (2019), "Grout diffusion model in porous media considering the variation in viscosity with time", Adv. Mech. Eng., 11(1), 1-9. https://doi.org/10.1177/1687814018819890.
  17. Huang, S.L., Pei, Q.T., Ding, X.L., Zhang, Y.T., Liu, D.X., He, J. and Bian, K. (2020), "Grouting diffusion mechanism in an oblique crack in rock masses considering temporal and spatial variation of viscosity of fast-curing grouts", Geomech. Eng., 23(2), 151-163. https://doi.org/10.12989/gae.2020.23.2.151.
  18. Jafarpour, P., Moayed, R.Z. and Kordnaeij, A. (2020), "Behavior of zeolite-cement grouted sand under triaxial compression test", J. Rock Mech. Geotech. Eng., 12(1), 149-159. https://doi.org/10.1016/j.jrmge.2019.06.010.
  19. Karimi, A.H., Eslami, A., Zarrabi, M. and Khazaei, J. (2017), "Study of pile behavior by improvement of confining soils using frustum confining vessel", Scientia Iranica, 24(4), 1874-1882. https://doi.org/10.24200/sci.2017.4278.
  20. Karimi, A.H. and Eslami, A. (2018), "Physical modelling for pile performance combined with ground improvement using frustum confining vessel", Int. J. Phys. Model. Geotech., 18(3), 162-174. https://doi.org/10.1680/jphmg.15.00038.
  21. Lam, C., Jefferis, S.A. and Martin, C.M. (2014), "Effects of polymer and bentonite support fluids on concrete-sand interface shear strength", Geotechnique, 64(1), 28-39. https://doi.org/10.1680/geot.13.P.012.
  22. Lashkari, A. (2017), "A simple critical state interface model and its application in prediction of shaft resistance of non-displacement piles in sand", Comput. Geotech., 88, 95-110. https://doi.org/10.1016/j.compgeo.2017.03.008.
  23. Lehane, B.M., Gaudin, C. and Schneider, J.A. (2005), "Scale effects on tension capacity for rough piles buried in dense sand", Geotechnique, 55(10), 709-719. https://doi.org/10.1680/geot.2005.55.10.709.
  24. Li, L., Chen, H.H., Li, J.P. and Sun, D.A. (2021), "An elastoplastic solution to undrained expansion of a cylindrical cavity in SANICLAY under plane stress condition", Comput. Geotech., 132, 103990. https://doi.org/10.1016/j.compgeo.2020.103990.
  25. Li, L., Li, J.P. and Sun, D.A. (2016), "Anisotropically elastoplastic solution to undrained cylindrical cavity expansion in K0-consolidated clay", Comput. Geotech., 73, 83-90. https://doi.org/10.1016/j.compgeo.2015.11.022.
  26. Li, L., Li, J.P., Wang, Y. and Gong, W.B. (2020), "Analysis of nonlinear load-displacement behaviour of pile groups in clay considering installation effects", Soils Found., 60(4), 752-766. https://doi.org/10.1016/j.sandf.2020.04.008.
  27. Liu, N.W., Zhang, Z.M., Zhang, Q.Q. and Fang, K. (2013), "Destructive field tests on mobilization of end resistance of cast-in-situ bored piles", J. Central South Univ., 20(4), 1071-1078. https://doi.org/10.1007/s11771-013-1586-8.
  28. Liu, Q.S., Lei, G.F., Peng, X.X., Lu, C.B. and Wei, L. (2018), "Rheological characteristics of cement grout and its effect on mechanical properties of a rock fracture", Rock Mech. Rock Eng., 51(2), 613-625. https://doi.org/10.1007/s00603-017-1340-x.
  29. Maghous,. S, Saada, Z., Dormieux, L., Canou, J. and Dupla, J.C. (2007), "A model for in situ grouting with account for particle filtration", Comput. Geotech., 34(3), 164-174. https://doi.org/10.1016/j.compgeo.2006.11.003.
  30. Mozumder, R.A., Laskar, A.I. and Hussain, M. (2018), "Penetrability prediction of microfine cement grout in granular soil using Artificial Intelligence techniques", Tunn. Undergr. Sp. Tech., 72, 131-144. https://doi.org/10.1016/j.tust.2017.11.023.
  31. Ng, C.W.W. and Lei, G.H. (2003), "Performance of long rectangular barrettes in granitic saprolites", J. Geotech. Geoenviron. Eng., 129(8), 685-696. https://doi.org/10.1061/(asce)1090-0241(2003)129:8(685).
  32. Nishimura, S., Takehana, K., Morikawa, Y. and Takahashi, H. (2011), "Experimental study of stress changes due to compaction grouting", Soils Found., 51(6), 1037-1049. https://doi.org/10.3208/sandf.51.1037.
  33. Qi, C.G., Liu, G.B., Wang, Y. and Deng, Y.B. (2015), "A design method for plastic tube cast-in-place concrete pile considering cavity contraction and its validation", Comput. Geotech., 69, 262-271. https://doi.org/10.1016/j.compgeo.2015.05.016.
  34. Ruan, W.J. (2005), "Research on diffusion of grouting and basic properties of grouts", Chinese J. Geotech. Eng., 27(1), 69-73. (in Chinese)
  35. Saada, Z., Canou, J., Dormieux, L., Dupla, J.C. and Maghous, S. (2005), "Modelling of cement suspension flow in granular porous media", Int. J. Numer. Anal. Method. Geomech., 29(7), 691-711. https://doi.org/10.1002/nag.433.
  36. Saada, Z., Canou, J., Dormieux, L. and Dupla, J.C. (2006), "Evaluation of elementary filtration properties of a cement grout injected in a sand", Can. Geotech. J., 43(12), 1273-1289. https://doi.org/10.1139/t06-082.
  37. Schmudderich, C., Shahrabi, M.M., Taiebat, M. and Lavasan, A.A. (2020), "Strategies for numerical simulation of cast-in-place piles under axial loading", Comput. Geotech., 125, 103656. https://doi.org/10.1016/j.compgeo.2020.103656.
  38. Shrivastava, N. and Zen, K. (2018), "An experimental study of compaction grouting on its densification and confining effects", Geotech. Geol. Eng., 36(2), 983-993. https://doi.org/10.1007/s10706-017-0369-7.
  39. Silvestri, V. and Abou-Samra, G. (2012), "Analytical solution for undrained plane strain expansion of a cylindrical cavity in modified cam clay", Geomech. Eng., 4(1), 19-37. https://doi.org/10.12989/gae.2012.4.1.019.
  40. Thiyyakkandi, S., McVay, M., Bloomquist, D. and Lai, P. (2013), "Measured and predicted response of a new jetted and grouted precast pile with membranes in cohesionless soils", J. Geotech. Geoenviron. Eng., 139(8), 1334-1345. https://doi.org/10.1061/(asce)gt.1943-5606.0000860.
  41. Thiyyakkandi, S., McVay, M., Bloomquist, D. and Lai, P. (2014), "Experimental study, numerical modeling of and axial prediction approach to base grouted drilled shafts in cohesionless soils", Acta Geotechnica, 9(3), 439-454. https://doi.org/10.1007/s11440-013-0246-3.
  42. Wu, Y., Zhang, X.F., Zhao, C. and Zhao, C.F. (2023), "Effects of soil unloading and grouting on the vertical bearing mechanism for compressive piles", Ocean Eng., 271(2023), 113754. https://doi.org/10.1016/j.oceaneng.2023.113754.
  43. Yang, Z.Q., Hou, K.P. and Guo, T.T. (2011), "Study on the effects of different water-cement ratios on the flow pattern properties of cement grouts", Proceedings of the International Conference on Green Building, Materials and Civil Engineering (GBMCE 2011), August 22-23, Shangri La, China.
  44. Yang, Z.Q., Ding, Y., Mi, Y.P., Zhu, Y.Y., Yang, Y., Guo, Y.H., Zhang, B.H., Li, S.H., Su, J.K., Chen, J.Z., Xu, W.Z., Liu, W.L., Liu, H. and Wang, Y.D. (2021), "Comprehensive effect of the time and water-cement ratio on the rheological properties of power-law cement grouts", Geofluids, 2021, 6636708. https://doi.org/10.1155/2021/6636708.
  45. Zhang, Q.Q., Li, H.T., Cui, W., Zhao, Y.H., Wang, S.L. and Xu, F. (2021), "Analysis of grout diffusion of postgrouting pile considering the time-dependent behavior of grout viscosity", Int. J. Geomech., 21(11), 04021201. https://doi.org/10.1061/(asce)gm.1943-5622.0002144.
  46. Zhang, Z.M., Zou, J., Liu, J.W. and He, J.Y. (2010), "Theoretical study of climbing height of grout in pile-bottom base grouting", Rock Soil Mech., 31(8), 2535-2540. (in Chinese)
  47. Zhang, J.Q., Zhao, C.F. and Wu, Y. (2023), "Experimental study on post-grouting pile vertical bearing performance considering different grouting methods and parameters in cohesive soil", Appl. Sci., 13(22), 12175. https://doi.org/10.3390/app132212175.
  48. Zhao, C.F., Wu, Y., Zhao, C., Zhang, Q.Z., Liu, F.M. and Liu, F. (2019), "Pile side resistance in sands for the unloading effect and modulus degradation", Materiales De Construccion, 69(334), e185. https://doi.org/10.3989/mc.2019.03718.
  49. Zhao, C.F., Wu, Y., Zhao, C. and Wang, Y. (2020), "Load-displacement relationship of single piles in clay considering different tip grouting volumes and grouting returned heights", Int. J. Geomech., 20(2), 04019158. https://doi.org/10.1061/(asce)gm.1943-5622.0001547.
  50. Zhao, C.F., Zhang, J.Q., Zhao, C., Wu, Y. and Wang, Y.B. (2023), "Cavity reverse expansion considering elastoplastic unloading and application in cast-in-situ bored piles", Soils Found., 63(2023), 101339. https://doi.org/10.1016/j.sandf.2023.101339.
  51. Zou, J.F., Yang, T. and Deng, D.P. (2019), "Field test of the long-term settlement for the post-grouted pile in the deep-thick soft soil", Geomech. Eng., 19(2), 115-126. https://doi.org/10.12989/gae.2019.19.2.115.