DOI QR코드

DOI QR Code

Design of web-stiffened lipped channel beams experiencing distortional global interaction by direct strength method

  • Hashmi S.S. Ahmed (Department of Civil Engineering, Maharashtra Institute of Technology) ;
  • G. Khushbu (Department of Civil Engineering, Maharashtra Institute of Technology) ;
  • M. Anbarasu (Department of Civil Engineering, Government College of Engineering) ;
  • Ather Khan (Department of Civil Engineering, Maharashtra Institute of Technology)
  • Received : 2023.06.26
  • Accepted : 2024.04.04
  • Published : 2024.04.25

Abstract

This article presents the behaviour and design of cold-formed steel (CFS) web-stiffened lipped channel beams that primarily fail owing to the buckling interaction of distortional and global buckling modes. The incorporation of an intermediate stiffener in the web of the lipped channel improved the buckling performance leads to distortional buckling at intermediate length beams. The prediction of the strength of members that fail in individual buckling modes can be easily determined using the current DSM equations. However, it is difficult to estimate the strength of members undergoing buckling interactions. Special attention is required to predict the strength of the members undergoing strong buckling interactions. In the present study, the geometric dimensions of the web stiffened lipped channel beam sections were chosen such that they have almost equal distortional and global buckling stresses to have strong interactions. A validated numerical model was used to perform a parametric study and obtain design strength data for CFS web-stiffened lipped channel beams. Based on the obtained numerical data, an assessment of the current DSM equations and the equations proposed in the literature (for lipped channel CFS sections) is performed. Suitable modifications were also proposed in this work, which resulted in a higher level of design accuracy to predict the flexural strength of CFS web stiffened lipped channel beams undergoing distortional and global mode interaction. Furthermore, reliability analysis was performed to confirm the reliability of the proposed modification.

Keywords

References

  1. ABAQUS (2019), Version 6.19, SIMULIA, Providence, USA.
  2. Ahmed, H.S.S., Ghosh, S. and Mangal, M. (2017), "Probabilistic estimation of the buckling strength of a CFS lipped-channel section with Type 1 imperfection", Thin Wall. Struct., 119, 447-456. https://doi.org/10.1016/j.tws.2017.07.001.
  3. AISI (2007), North American Specification for the Design of Cold Formed Steel Structural Members, Washington, DC, USA.
  4. AISI (2016), North American Specification for the Design of Cold Formed Steel Structural Members, Washington, DC, USA.
  5. Anbarasu, M. (2016), "Local-distortional buckling interaction on cold-formed steel lipped channel beams", Thin Wall. Struct., 98, 351-359. https://doi.org/10.1016/j.tws.2015.10.003.
  6. Anbarasu, M. and Murugapandian, G. (2016), "Experimental study on cold-formed steel web stiffened lipped channel columns undergoing distortional-global interaction", Mater. Struct., 49, 1433-1442. https://doi.org/10.1617/s11527-015-0586-6.
  7. Bandula Heva, Y. and Mahendran, M. (2012), "Flexural-torsional buckling tests of CFS compression members at elevated temperatures", Steel Compos. Struct., 14(3), 205-227. https://doi.org/10.12989/scs.2012.14.3.205.
  8. Dar, M.A, Subramanian, N., Rather, A.I., Dar, A.R., Lim, B.P.J. Anbarasu, M. and Roy, K (2019), "Effect of angle stiffeners on the flexural strength and stiffness of cold-formed steel beams", Steel Compos. Struct., 33(2), 225-243. https://doi.org/10.12989/scs.2019.33.2.225.
  9. Dar, M.A., Subramanian, N., Anbarasu, M., Dar, A.R. and Lim, J.B. (2018), "Structural performance of cold-formed steel composite beams", Steel Compos. Struct., 27(5), 545-554. https://doi.org/10.12989/scs.2018.27.5.545.
  10. Dar, M.A., Subramanian, N., Dar, A.R., Majid, M., Haseeb, M. and Tahoor, M. (2019), "Structural efficiency of various strengthening schemes for cold-formed steel beams: Effect of global imperfections", Steel Compos. Struct., 30(4), 393-403. https://doi.org/10.12989/scs.2020.30.4.393.
  11. Dar, M.A., Subramanian, N., Dar, D.A., Dar, A.R., Anbarasu, M., Lim, J.B. and Mahjoubi, S. (2020), "Flexural strength of cold-formed steel built-up composite beams with rectangular compression flanges", Steel Compos. Struct., 34(2), 171-188. https://doi.org/10.12989/scs.2020.34.2.171.
  12. Dinis, B. and Camotim, D. (2010), "Local/distortional mode interaction in cold-formed steel lipped channel beams", Thin Wall. Struct., 48(10-11), 771-785. https://doi.org/10.1016/j.tws.2010.01.005.
  13. Dinis, P.B., Batista, E.M., Camotim, D. and dos Santos, E.S. (2012), "Local-distortional-global interaction in lipped channel columns: Experimental results, numerical simulations and design considerations", Thin Wall. Struct., 61, 2-13. https://doi.org/10.1016/j.tws.2012.04.012.
  14. Gardner, L. and Yun, X. (2018), "Description of stress-strain curves for cold-formed steels", Constr. Build. Mater., 189, 527-538. https://doi.org/10.1016/j.conbuildmat.2018.08.195.
  15. Kankanamge, N.D. and Mahendran, M. (2012), "Behaviour and design of cold-formed steel beams subject to lateral-torsional buckling", Thin Wall. Struct., 51, 25-38. https://doi.org/10.1016/j.tws.2011.10.012.
  16. Kwon, Y.B., Kim, B.S. and Hancock, G.J. (2009), "Compression tests of high strength cold-formed steel channels with buckling interaction", J. Constr. Steel Res., 65(2), 278-279. https://doi.org/10.1016/j.jcsr.2008.07.005.
  17. Laim, L., Rodrigues, J.P.C. and da Silva, L.S. (2013), "Experimental and numerical analysis on the structural behaviour of cold-formed steel beams", Thin Wall. Struct., 72, 1-13. https://doi.org/10.1016/j.tws.2013.06.008.
  18. Martins, A.D., Camotim, D., Goncalves, R. and Dinis, P.B. (2018), "GBT-based assessment of the mechanics of distortional-global interaction" in thin-walled lipped channel beams", Thin Wall. Struct., 124, 32-47. https://doi.org/10.1016/j.tws.2017.11.036.
  19. Martins, A.D., Camotim, D. and Borges, P. (2017), "Local-distortional interaction in cold-formed steel beams: Behaviour, strength and DSM design", Thin Wall. Struct., 119, 879-901. https://doi.org/10.1016/j.tws.2017.06.011.
  20. Martins, A.D., Camotim, D. and Dinis, P.B. (2018), "Distortional-global interaction in lipped channel and zed-section beams", Thin Wall. Struct., 129, 289-308. https://doi.org/10.1016/j.tws.2018.02.015.
  21. Muthuraj, H., Sekar, S.K., Mahendran, M. and Deepak, O.P. (2017), "Post buckling mechanics and strength of cold-formed steel columns exhibiting local-distortional interaction mode failure", Struct. Eng. Mech., 64(5), 621-640. https://doi.org/10.12989/sem.2017.64.5.621.
  22. Nandini, P. and Kalyanaraman, V. (2010), "Strength of cold-formed lipped channel beams under interaction of local, distortional, and lateral torsional buckling", Thin Wall. Struct., 48(10-11), 872-77. https://doi.org/10.1016/j.tws.2010.04.013.
  23. Niu, S., Rasmussen, K.J.R. and Fan, F. (2014), "Distortional-global interaction buckling of stainless-steel C-beams: Part I-Experimental investigation", J. Constr. Steel Res., 96, 127-139. https://doi.org/10.1016/j.jcsr.2014.01.007.
  24. Niu, S., Rasmussen, K.J.R. and Fan, F. (2014), "Distortional-global interaction buckling of stainless steel C-beams: Part II-Numerical study and design", J. Constr. Steel Res., 96, 127-139. https://doi.org/10.1016/j.jcsr.2014.01.008.
  25. Orlando, M., Lavacchini, G., Ortolani, B. and Spinelli, P. (2017), "Experimental capacity of perforated cold-formed steel open sections under compression and bending", Steel Compos. Struct., 24(2), 201-211. https://doi.org/10.12989/scs.2017.24.2.201.
  26. Pham, C.H. (2010), "Direct strength method of design of cold-formed sections in shear, and combined bending and shear", Ph.D. Thesis, The University of Sydney, Australia.
  27. Pham, C.H. and Hancock, G.J. (2013), "Experimental investigation and direct strength design of high-strength, complex C-sections in pure bending", J. Struct. Eng., 139(11), 1842-1852. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000736.
  28. Schafer, B.W. and Pekoz, T. (1998), "Computational modelling of cold-formed steel: Characterizing geometric imperfections and residual stresses", J. Constr. Steel Res., 47, 193-210. https://doi.org/10.1016/S0143-974X(98)00007-8.
  29. Schafer, B.W. CUFSM: Elastic Buckling Analysis of Thin-Walled Members by Finite Strip Analysis, CUFSM, Version 5.04. http://www.ce.jhu.edu/bschafer/cufsm.
  30. Silvestre, N. (2004), "Distortional buckling formulae for cold-formed steel rack-section members", Steel Compos. Struct., 4(1), 49-75. https://doi.org/10.12989/scs.2004.4.1.049.
  31. Wang, L. and Young, B. (2014), "Design of cold-formed steel channels with stiffened webs subjected to bending", Thin Wall. Struct., 85, 81-92. https://doi.org/10.1016/j.tws.2014.08.002.
  32. Yu, C. and Schafer, B.W. (2006), "Distortional buckling tests on cold-formed steel beams", J. Struct. Eng., 131(4), 515-528. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:4(515).
  33. Zhang, Z., Xu, S., Li, H., Li, R. and Nie, B. (2020), "Study on the flexural behaviour of corroded built-up cold-formed thin-walled steel beams", Steel Compos. Struct., 37(3), 353-369. https://doi.org/10.12989/scs.2020.37.3.353.
  34. Zhao, J.Y. and Yu, C. (2019), "Experimental study and numerical simulation of G550 high strength cold-formed steel Z-section members under pure bending and moment gradient", Int J Steel Struct, 19, 366-380. https://doi.org/10.1007/s13296-018-0118-7.