DOI QR코드

DOI QR Code

Improving the meiotic competence of small antral follicle-derived porcine oocytes by using dibutyryl-cAMP and melatonin

  • Jakree Jitjumnong (Department of Animal Science, National Chung Hsing University) ;
  • Pin-Chi Tang (Department of Animal Science, National Chung Hsing University)
  • Received : 2023.09.18
  • Accepted : 2023.12.26
  • Published : 2024.06.01

Abstract

Objective: We increased the nuclear maturation rate of antral follicle derived oocytes by using a pre-in vitro maturation (IVM) culture system and improved the developmental potential of these porcine pathenotes by supplementing with melatonin. Furthermore, we investigated the expression patterns of genes involved in cumulus expansion (HAS2, PTGS2, TNFAIP6, and PTX3) derived from small and medium antral follicles before and after oocyte maturation. Methods: Only the cumulus oocyte-complexes (COCs) derived from small antral follicles were induced with [Pre-SF(+)hCG] or without [Pre-SF(-)hCG] the addition of human chorionic gonadotropin (hCG) during the last 7 h of the pre-IVM period before undergoing the regular culture system. The mature oocytes were investigated on embryonic development after parthenogenetic activation (PA). Melatonin (10-7 M) was supplemented during in vitro culture (IVC) to improve the developmental potential of these porcine pathenotes. Results: A pre-IVM culture system with hCG added during the last 7 h of the pre-IVM period [Pre-SF(+)hCG] effectively supported small antral follicle-derived oocytes and increased their nuclear maturation rate. The oocytes derived from medium antral follicles exhibited the highest nuclear maturation rate in a regular culture system. Compared with oocytes cultured in a regular culture system, those cultured in the pre-IVM culture system exhibited considerable overexpression of HAS2, PTGS2, and TNFAIP6. Porcine embryos treated with melatonin during IVC exhibited markedly improved quality and developmental competence after PA. Notably, melatonin supplementation during the IVM period can reduce and increase the levels of intracellular reactive oxygen species (ROS) and glutathione (GSH), respectively. Conclusion: Our findings indicate that the Pre-SF(+)hCG culture system increases the nuclear maturation rate of small antral follicle-derived oocytes and the expression of genes involved in cumulus expansion. Melatonin supplementation during IVC may improve the quality and increase the blastocyst formation rate of porcine embryos. In addition, it can reduce and increase the levels of ROS and GSH, respectively, in mature oocytes, thus affecting subsequent embryos.

Keywords

Acknowledgement

The authors would like to thank the Department of Animal Science, College of Agricultural and Natural Resources, National Chung Hsing University for kindly offering laboratory work during this research.

References

  1. Lin T, Oqani RK, Lee JE, Shin HY, Jin DI. Coculture with good-quality COCs enhances the maturation and development rates of poor-quality COCs. Theriogenology 2016;85: 396-407. https://doi.org/10.1016/j.theriogenology.2015.09.001
  2. Sugimura S, Yamanouchi T, Palmerini MG, et al. Effect of pre-in vitro maturation with cAMP modulators on the acquisition of oocyte developmental competence in cattle. J Reprod Dev 2018;64:233-41. https://doi.org/10.1262/jrd.2018-009
  3. Liu RH, Li YH, Jiao LH, Wang XN, Wang H, Wang WH. Extracellular and intracellular factors affecting nuclear and cytoplasmic maturation of porcine oocytes collected from different sizes of follicles. Zygote 2002;10:253-60. https://doi.org/10.1017/s0967199402002332
  4. Bagg MA, Nottle MB, Armstrong DT, Grupen CG. Relationship between follicle size and oocyte developmental competence in prepubertal and adult pigs. Reprod Fertil Dev 2007;19:797-803. https://doi.org/10.1071/rd07018
  5. Albuz FK, Sasseville M, Lane M, Armstrong DT, Thompson JG, Gilchrist RB. Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes. Hum Reprod 2010;25:2999-3011. https://doi.org/10.1093/humrep/deq246
  6. Cao H, Bian Y, Zhang F, et al. Functional role of Forskolin and PD166285 in the development of denuded mouse oocytes. Asian-Australas J Anim Sci 2018;31:344-53. https://doi.org/10.5713/ajas.17.0441
  7. Richani D, Wang X, Zeng HT, Smitz J, Thompson JG, Gilchrist RB. Pre-maturation with cAMP modulators in conjunction with EGF-like peptides during in vitro maturation enhances mouse oocyte developmental competence. Mol Reprod Dev 2014;81:422-35. https://doi.org/10.1002/mrd.22307
  8. Guimaraes ALS, Pereira S, Leme L, Dode MAN. Evaluation of the simulated physiological oocyte maturation system for improving bovine in vitro embryo production. Theriogenology 2015;83:52-7. https://doi.org/10.1016/j.theriogenology.2014.07.042
  9. Funahashi H, Cantley TC, Day BN. Preincubation of cumulusoocyte complexes before exposure to gonadotropins improves the developmental competence of porcine embryos matured and fertilized in vitro. Theriogenology 1997;47:679-86. https://doi.org/10.1016/s0093-691x(97)00026-5
  10. Cruz MHC, Leal CLV, da Cruz JF, Tan DX, Reiter RJ. Role of melatonin on production and preservation of gametes and embryos: a brief review. Anim Reprod Sci 2014;145:150-60. https://doi.org/10.1016/j.anireprosci.2014.01.011
  11. Kitagawa Y, Suzuki K, Yoneda A, Watanabe T. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology 2004;62:1186-97. https://doi.org/10.1016/j.theriogenology.2004.01.011
  12. Do L, Shibata Y, Taniguchi M, et al. Melatonin supplementation during in vitro maturation and development supports the development of porcine embryos. Reprod Domest Anim 2015;50:1054-8. https://doi.org/10.1111/rda.12607
  13. Li Y, Zhang Z, He C, et al. Melatonin protects porcine oocyte in vitro maturation from heat stress. J Pineal Res 2015;59: 365-75. https://doi.org/10.1111/jpi.12268
  14. Van NTT, My LBA, Van Thuan N, Bui HT. Improve the developmental competence of porcine oocytes from small antral follicles by pre-maturation culture method. Theriogenology 2020;149:139-48. https://doi.org/10.1016/j.theriogenology.2020.02.038
  15. Steel RGD, Torrie JH. Principles and procedures of statistics, a biometrical approach. 2nd ed. New York, USA: McGrawHill Kogakusha, Ltd; 1980.
  16. Kim EH, Kim GA, Taweechaipaisankul A, et al. Melatonin enhances porcine embryo development via the Nrf2/ARE signaling pathway. J Mol Endocrinol 2019;63:175-85. https://doi.org/10.1530/JME-19-0093
  17. Lee JB, Lee MG, Lin T, et al. Effect of oocyte chromatin status in porcine follicles on the embryo development in vitro. AsianAustralas J Anim Sci 2019;32:956-65. https://doi.org/10.5713/ajas.18.0739
  18. Topfer D, Ebeling S, Weitzel JM, Spannbrucker AC. Effect of follicle size on in vitro maturation of pre-pubertal porcine cumulus oocyte complexes. Reprod Domest Anim 2016;51:370-7. https://doi.org/10.1111/rda.12688
  19. Algriany O, Bevers M, Schoevers E, Colenbrander B, Dieleman S. Follicle size-dependent effects of sow follicular fluid on in vitro cumulus expansion, nuclear maturation and blastocyst formation of sow cumulus oocytes complexes. Theriogenology 2004;62:1483-97. https://doi.org/10.1016/j.theriogenology.2004.02.008
  20. Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science 2002;296:2178-80. https://doi.org/10.1126/science.1071965
  21. Calder MD, Caveney AN, Westhusin ME, Watson AJ. Cyclooxygenase-2 and prostaglandin E2 (PGE2) receptor messenger RNAs are affected by bovine oocyte maturation time and cumulus-oocyte complex quality, and PGE2 induces moderate expansion of the bovine cumulus in vitro. Biol Reprod 2001; 65:135-40. https://doi.org/10.1095/biolreprod65.1.135
  22. Lim H, Paria BC, Das SK, et al. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell 1997;91: 197-208. https://doi.org/10.1016/s0092-8674(00)80402-x
  23. Goetten ALF, Koch J, Rocha CC, et al. Expression profile of key genes involved in DNA repair mechanisms in bovine cumulus cells cultured with bovine serum albumin or fetal calf serum. Reprod Biol 2023;23:100709. https://doi.org/10.1016/j.repbio.2022.100709
  24. Fülöp C, Szanto S, Mukhopadhyay D, et al. Impaired cumulus mucification and female sterility in tumor necrosis factorinduced protein-6 deficient mice. Development 2003;130: 2253-61. https://doi.org/10.1242/dev.00422
  25. Matoba S, Bender K, Fahey AG, et al. Predictive value of bovine follicular components as markers of oocyte developmental potential. Reprod Fertil Dev 2014;26:337-45. http://doi.org/10.1071/RD13007
  26. Zhang X, Jafari N, Barnes RB, Confino E, Milad M, Kazer R. Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality. Fertil Steril 2005;83:1169-79. https://doi.org/10.1016/j.fertnstert.2004.11.030
  27. Nomura M, Iwase A, Furui K, et al. Preferable correlation to blastocyst development and pregnancy rates with a new embryo grading system specific for day 3 embryos. J Assist Reprod Genet 2007;24:23-8. https://doi.org/10.1007/s10815-006-9086-5
  28. Nakano M, Kato Y, Tsunoda Y. Effect of melatonin treatment on the developmental potential of parthenogenetic and somatic cell nuclear-transferred porcine oocytes in vitro. Zygote 2012; 20:199-207. https://doi.org/10.1017/S0967199411000190
  29. Han J, Wang T, Fu L, et al. Altered oxidative stress, apoptosis/ autophagy, and epigenetic modifications in Zearalenonetreated porcine oocytes. Toxicol Res 2015;4:1184-94. https://doi.org/10.1039/c5tx00070j
  30. Kang JT, Koo OJ, Kwon DK, et al. Effects of melatonin on in vitro maturation of porcine oocyte and expression of melatonin receptor RNA in cumulus and granulosa cells. J Pineal Res 2009;46:22-8. https://doi.org/10.1111/j.1600-079X.2008.00602.x
  31. Lin T, Lee JE, Kang JW, et al. Melatonin supplementation during prolonged in vitro maturation improves the quality and development of poor-quality porcine oocytes via anti-oxidative and anti-apoptotic effects. Mol Reprod Dev 2018; 85:665-81. https://doi.org/10.1002/mrd.23052
  32. Shi JM, Tian XZ, Zhou GB, et al. Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes. J Pineal Res 2009; 47:318-23. https://doi.org/10.1111/j.1600-079X.2009.00717.x
  33. Okada K, Krylov V, Kren R, Fulka Jr J. Development of pig embryos after electro-activation and in vitro fertilization in PZM-3 or PZM supplemented with fetal bovine serum. J Reprod Dev 2006;52:91-8. https://doi.org/10.1262/jrd.17059
  34. Tamura H, Takasaki A, Miwa I, et al. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J Pineal Res 2008;44:280-7. https://doi.org/10.1111/j.1600-079X.2007.00524.x
  35. Zhao XM, Hao HS, Du WH, et al. Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes. J Pineal Res 2016;60:132-41. https://doi.org/10.1111/jpi.12290
  36. Zhao XM, Min JT, Du WH, et al. Melatonin enhances the in vitro maturation and developmental potential of bovine oocytes denuded of the cumulus oophorus. Zygote 2015;23:525-36. https://doi.org/10.1017/S0967199414000161
  37. Young IS, Woodside JV. Antioxidants in health and disease. J Clin Pathol 2001;54:176-86. https://doi.org/10.1136/jcp.54.3.176
  38. Kere M, Siriboon C, Lo NW, Nguyen NT, Ju JC. Ascorbic acid improves the developmental competence of porcine oocytes after parthenogenetic activation and somatic cell nuclear transplantation. J Reprod Dev 2013;59:78-84. https://doi.org/10.1262/jrd.2012-114
  39. Li Y, Wang J, Zhang Z, et al. Resveratrol compares with melatonin in improving in vitro porcine oocyte maturation under heat stress. J Anim Sci Biotechnol 2016;7:1-10. https://doi.org/10.1186/s40104-016-0093-9
  40. Zhao XM, Wang N, Hao HS, et al. Melatonin improves the fertilization capacity and developmental ability of bovine oocytes by regulating cytoplasmic maturation events. J Pineal Res 2018;64:e12445. https://doi.org/10.1111/jpi.12445