DOI QR코드

DOI QR Code

Comparison of miR-106b, miR-191, and miR-30d expression dynamics in milk with regard to its composition in Holstein and Ayrshire cows

  • Marina V. Pozovnikova (Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry) ;
  • Viktoria B. Leibova (Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry) ;
  • Olga V. Tulinova (Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry) ;
  • Elena A. Romanova (Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry) ;
  • Artem P. Dysin (Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry) ;
  • Natalia V. Dementieva (Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry) ;
  • Anastasiia I. Azovtseva (Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry) ;
  • Sergey E. Sedykh (Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences)
  • Received : 2023.10.18
  • Accepted : 2024.01.12
  • Published : 2024.06.01

Abstract

Objective: Milk composition varies considerably and depends on paratypical, genetic, and epigenetic factors. MiRNAs belong to the class of small non-coding RNAs; they are one of the key tools of epigenetic control because of their ability to regulate gene expression at the post-transcriptional level. We compared the relative expression levels of miR-106b, miR-191, and miR-30d in milk to demonstrate the relationship between the content of these miRNAs with protein and fat components of milk in Holstein and Ayrshire cattle. Methods: Milk fat, protein, and casein contents were determined in the obtained samples, as well as the content of the main fatty acids (g/100 g milk), including: saturated acids, such as myristic (C14:0), palmitic (C16:0), and stearic (C18:0) acids; monounsaturated acids, including oleic (C18:1) acid; as well as long-, medium- and short-chain, polyunsaturated, and trans fatty acids. Real-time stem-loop one-tube reverse transcription polymerase chain reaction with TaqMan probes was used to measure the miRNA expression levels. Results: The miRNA expression levels in milk samples were found to be decreased in the first two months in Holstein breed, and in the first four months in Ayrshire breed. Correlation analysis did not reveal any dependence between changes in the expression level of miRNA and milk fat content, but showed a multidirectional relationship with individual milk fatty acids. Positive associations between the expression levels of miR-106b and miR-30d and protein and casein content were found in the Ayrshire breed. Receiver operating characteristic curve analysis showed that miR-106b and miR-30d expression levels can cause changes in fatty acid and protein composition of milk in Ayrshire cows, whereas miR-106b expression level determines the fatty acid composition in Holsteins. Conclusion: The data obtained in this study showed that miR-106b, miR-191, and miR-30d expression levels in milk samples have peculiarities associated with breed affiliation and the lactation period.

Keywords

Acknowledgement

The authors thank the reviewers for their contribution to the peer evaluation of this study.

References

  1. Decker JE, McKay SD, Rolf MM, et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet 2014;10:e1004254. https://doi.org/10.1371/journal.pgen.1004254
  2. Leroy G, Besbes B, Boettcher P, Hoffmann I, Capitan A, Baumung R. Rare phenotypes in domestic animals: unique resources for multiple applications. Anim Genet 2016;47:141-53. https://doi.org/10.1111/age.12393
  3. Stocco G, Cipolat-Gotet C, Bobbo T, Cecchinato A, Bittante G. Breed of cow and herd productivity affect milk composition and modeling of coagulation, curd firming, and syneresis. J Dairy Sci 2017;100:129-45. https://doi.org/10.3168/jds.2016-11662
  4. Bar C, Sutter M, Kopp C, et al. Impact of herbage proportion, animal breed, lactation stage and season on the fatty acid and protein composition of milk. Int Dairy J 2020;109:104785. https://doi.org/10.1016/j.idairyj.2020.104785
  5. Kobayashi K. Culture models to investigate mechanisms of milk production and blood-milk barrier in mammary epithelial cells: a review and a protocol. J Mammary Gland Biol Neoplasia 2023;28:8. https://doi.org/10.1007/s10911-023-09536-y
  6. Lin Y, Lv H, Jiang M, Zhou J, Song S, Hou X. Functional analysis of the dairy cow mammary transcriptome between early lactation and mid-dry period. J Dairy Res 2019;86:63-7. https://doi.org/10.1017/s0022029919000049
  7. Bhat SA, Ahmad SM, Ibeagha-Awemu EM, et al. Comparative transcriptome analysis of mammary epithelial cells at different stages of lactation reveals wide differences in gene expression and pathways regulating milk synthesis between Jersey and Kashmiri cattle. PLoS One 2019;14:e0211773. https://doi.org/10.1371/journal.pone.0211773
  8. VanRaden PM. Symposium review: how to implement genomic selection. J Dairy Sci 2020;103:5291-301. https://doi.org/10.3168/jds.2019-17684
  9. Wang M, Ibeagha-Awemu EM. Impacts of epigenetic processes on the health and productivity of livestock. Front Genet 2020;11:613636. https://doi.org/10.3389/fgene.2020.613636
  10. Mohr AM, Mott JL. Overview of microRNA biology. Semin Liver Dis 2015;35:3-11. https://doi.org/10.1055/s-0034-1397344
  11. Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010;56:1733-41. https://doi.org/10.1373/clinchem.2010.147405
  12. Van Hese I, Goossens K, Vandaele L, Opsomer G. Invited review: microRNAs in bovine colostrum-focus on their origin and potential health benefits for the calf. J Dairy Sci 2020;103:1-15. https://doi.org/10.3168/jds.2019-16959
  13. Li R, Dudemaine PL, Zhao X, Lei C, Ibeagha-Awemu EM. Comparative analysis of the miRNome of bovine milk fat, whey and cells. PLoS One 2016;11:e0154129. https://doi.org/10.1371/journal.pone.0154129
  14. Kosaka N, Izumi H, Sekine K, Ochiya T. microRNA as a new immune-regulatory agent in breast milk. Silence 2010;1:7. https://doi.org/10.1186/1758-907x-1-7
  15. Abou el qassim L, Le Guillou S, Royo LJ. Variation of miRNA content in cow raw milk depending on the dairy production system. Int J Mol Sci 2022;23:11681. https://doi.org/10.3390/ijms231911681
  16. Liu G, Liao Y, Sun B, et al. Effects of chronic heat stress on mRNA and miRNA expressions in dairy cows. Gene 2020;742:144550. https://doi.org/10.1016/j.gene.2020.144550
  17. Le Guillou S, Leduc A, Laubier J, et al. Characterization of Holstein and Normande whole milk miRNomes highlights breed specificities. Sci Rep 2019;9:20345. https://doi.org/10.1038/s41598-019-56690-7
  18. Tzelos T, Ho W, Charmana VI, Lee S, Donadeu FX. MiRNAs in milk can be used towards early prediction of mammary gland inflammation in cattle. Sci Rep 2022;12:5131. https://doi.org/10.1038/s41598-022-09214-9
  19. Wang X, Zhang L, Jin J, et al. Comparative transcriptome analysis to investigate the potential role of miRNAs in milk protein/fat quality. Sci Rep 2018;8:6250. https://doi.org/10.1038/s41598-018-24727-y
  20. Dotsev AV, Sermyagin AA, Shakhin AV, et al. Evaluation of current gene pool of Kholmogor and black-and-white cattle breeds based on whole genome SNP analysis. Vavilov J Genet Breed 2018;22:742-7. https://doi.org/10.18699/VJ18.418
  21. Pozovnikova MV, Tulinova OV, Sermyagin AA, et al. Analysis of the genetic diversity of Ayrshire cattle in Russia (part 1). Ecol Genet 2022;20:5-12. https://doi.org/10.17816/ecogen88943
  22. Ammah AA, Do DN, Bissonnette N, Gevry N, Ibeagha-Awemu EM. Co-expression network analysis identifies mirna-mrna networks potentially regulating milk traits and blood metabolites. Int J Mol Sci 2018;19:2500. https://doi.org/10.3390/ijms19092500
  23. Do DN, Li R, Dudemaine PL, Ibeagha-Awemu EM. MicroRNA roles in signalling during lactation: an insight from differential expression, time course and pathway analyses of deep sequence data. Sci Rep 2017;7:44605. https://doi.org/10.1038/srep44605
  24. Wu X, Huang J, Liu Y, Li H, Han B, Sun D. Bta-miR-106b regulates bovine mammary epithelial cell proliferation, cell cycle, and milk protein synthesis by targeting the CDKN1A gene. Genes (Basel) 2022;13:2308. https://doi.org/10.3390/genes13122308
  25. Nagpal N, Kulshreshtha R. miR-191: an emerging player in disease biology. Front Genet 2014;5:99. https://doi.org/10.3389/fgene.2014.00099
  26. Tian X, Zhang Z. miR-191/DAB2 axis regulates the tumorigenicity of estrogen receptor-positive breast cancer. IUBMB Life 2018;70:71-80. https://doi.org/10.1002/iub.1705
  27. Zhao X, Mohan R, Ozcan S, Tang X. MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic β-cells. J Biol Chem 2012;287:31155-64. https://doi.org/10.1074/jbc.M112.362632
  28. Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 2007;3:12. https://doi.org/10.1186/1746-4811-3-12
  29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-8. https://doi.org/10.1006/meth.2001.1262
  30. Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS One 2018;13:e0206239. https://doi.org/10.1371/journal.pone.0206239
  31. Schwendel BH, Wester TJ, Morel PCH, et al. Invited review: organic and conventionally produced milk-an evaluation of factors influencing milk composition. J Dairy Sci 2015;98:721-46. https://doi.org/10.3168/jds.2014-8389
  32. Roin NR, Lokuge GMS, Fredsted MB, et al. Variations in fatty acids, micronutrients and metabolites in discrete milk lines of Danish dairy milk. Int Dairy J 2023;147:105786. https://doi.org/10.1016/j.idairyj.2023.105786
  33. Oliveira HR, Cant JP, Brito LF, et al. Genome-wide association for milk production traits and somatic cell score in different lactation stages of Ayrshire, Holstein, and Jersey dairy cattle. J Dairy Sci 2019;102:8159-74. https://doi.org/10.3168/jds.2019-16451
  34. Karamaeva AS, Soboleva N, Karamaev SV. Influence of breed on the cheese suitability of milk and quality of cheese. J Dairy Beef Cattle Farming 2018;5:34-8. https://doi.org/10.25632/MMS.2018.5.17503
  35. Lin X, Luo J, Zhang L, Zhu J. MicroRNAs synergistically regulate milk fat synthesis in mammary gland epithelial cells of dairy goats. Gene Expr 2013;16:1-13. https://doi.org/10.3727/105221613X13776146743262
  36. Perdomo L, Beneit N, Otero YF, et al. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc Diabetol 2015;14:75. https://doi.org/10.1186/s12933-015-0237-9
  37. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol 2019;16:461-78. https://doi.org/10.1038/s41575-019-0157-3
  38. Islam MA, Amin MN, Siddiqui SA, Hossain MP, Sultana F, Kabir MR. Trans fatty acids and lipid profile: a serious risk factor to cardiovascular disease, cancer and diabetes. Diabetes Metab Syndr 2019;13:1643-7. https://doi.org/10.1016/j.dsx.2019.03.033
  39. Desgagne V, Guay SP, Guerin R, et al. Variations in HDLcarried miR-223 and miR-135a concentrations after consumption of dietary trans fat are associated with changes in blood lipid and inflammatory markers in healthy men - an exploratory study. Epigenetics 2016;11:438-48. https://doi.org/10.1080/15592294.2016.1176816
  40. Haugsgjerd TR, Egeland GM, Nygard OK, et al. Intake of carbohydrates and SFA and risk of CHD in middle-age adults: the Hordaland Health Study (HUSK). Public Health Nutr 2022;25:634-48. https://doi.org/10.1017/s1368980020003043
  41. Kay SS, Delgado S, Mittal J, Eshraghi RS, Mittal R, Eshraghi AA. Beneficial effects of milk having A2 β-casein protein: myth or reality? J Nutr 2021;151:1061-72. https://doi.org/10.1093/jn/nxaa454
  42. Karlsson AO, Ipsen R, Schrader K, Ardo Y. Relationship between physical properties of casein micelles and rheology of skim milk concentrate. J Dairy Sci 2005;88:3784-97. https://doi.org/10.3168/jds.S0022-0302(05)73064-2
  43. Lemay DG, Lynn DJ, Martin WF, et al. The bovine lactation genome: insights into the evolution of mammalian milk. Genome Biol 2009;10:R43. https://doi.org/10.1186/gb-2009-10-4-r43
  44. Lin S, Ke C, Liu L, et al. Genome-wide association studies for immunoglobulin concentrations in colostrum and serum in Chinese Holstein. BMC Genomics 2022;23:41. https://doi.org/10.1186/s12864-021-08250-5
  45. Tahir MS, Porto-Neto LR, Gondro C, et al. Meta-analysis of heifer traits identified reproductive pathways in Bos indicus cattle. Genes (Basel) 2021;12:768. https://doi.org/10.3390/genes12050768
  46. Ganguly B, Ambwani TK, Rastogi SK. Electronic northern analysis of genes and modeling of gene networks underlying bovine milk fat production. Genet Res Int 2017;2017:1910530. https://doi.org/10.1155/2017/1910530
  47. Dash S, Singh A, Dixit SP, Kumar A. Identification of selection signatures for milk performance traits among indigenous dairy cattle breeds using high density genomic information. Indian J Anim Res 2022;1:1-7. https://doi.org/10.18805/IJAR.B-4908
  48. Lashkari S, Moller JW, Jensen SK, et al. Changes in longchain fatty acid composition of milk fat globule membrane and expression of mammary lipogenic genes in dairy cows fed sunflower seeds and rumen-protected choline. J Anim Physiol Anim Nutr (Berl) 2020;104:1606-19. https://doi.org/10.1111/jpn.13386
  49. Pszczola M, Strabel T, Mucha S, Sell-Kubiak E. Genome-wide association identifies methane production level relation to genetic control of digestive tract development in dairy cows. Sci Rep 2018;8:15164. https://doi.org/10.1038/s41598-018-33327-9
  50. Dijkstra J, Van Zijderveld S, Apajalahti J, et al. Relationships between methane production and milk fatty acid profiles in dairy cattle. Anim Feed Sci Technol 2011;166-7:590-5. https://doi.org/10.1016/j.anifeedsci.2011.04.042
  51. Merrill RA, Ahrens JM, Kaiser ME, Federhart KS, Poon VY, Clagett-Dame M. All-trans retinoic acid-responsive genes identified in the human SH-SY5Y neuroblastoma cell line and their regulated expression in the nervous system of early embryos. Biol Chem 2004;385:605-14. https://doi.org/10.1515/BC.2004.075
  52. Barber MJ, Mangravite LM, Hyde CL, et al. Genome-wide association of lipid-lowering response to statins in combined study populations. PLoS One 2010;5:e9763. https://doi.org/10.1371/journal.pone.0009763
  53. Shin SC, Chung ER. A novel SNP in the exon 8 region of the CLMN gene and its association with marbling score in Hanwoo. J Life Sci 2019;29:1314-20. https://doi.org/10.5352/JLS.2019.29.12.1314
  54. Yu H, Zhao Y, Iqbal A, et al. Effects of polymorphism of the GPAM gene on milk quality traits and its relation to triglyceride metabolism in bovine mammary epithelial cells of dairy cattle. Arch Anim Breed 2021;64:35-44. https://doi.org/10.5194/aab-64-35-2021
  55. Palombo V, Milanesi M, Sgorlon S, et al. Genome-wide association study of milk fatty acid composition in Italian Simmental and Italian Holstein cows using single nucleotide polymorphism arrays. J Dairy Sci 2018;101:11004-19. https://doi.org/10.3168/jds.2018-14413