DOI QR코드

DOI QR Code

Performance, blood and antioxidant status in dual-purpose laying hens supplemented with aqueous extract of Christ's thorn jujube (Ziziphus spina-christi L.) leaves as phytogenic agent in subtropical conditions

  • Khaled H. El-Kholy (Animal, Poultry and Fish Production Department, Faculty of Agriculture, Damietta University) ;
  • Hasan Tag El-Din (Animal, Poultry and Fish Production Department, Faculty of Agriculture, Damietta University) ;
  • Found A. Tawfeek (Agricultural Research Center) ;
  • Vincenzo Tufarelli (Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari 'Aldo Moro') ;
  • Caterina Losacco (Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), Section of Veterinary Science and Animal Production, University of Bari 'Aldo Moro') ;
  • Rashed A. Alhotan (Department of Animal Production, College of Food and Agricultural Sciences, King Saud University) ;
  • Manal E. Shafi (Department of Biological Sciences, Zoology, Faculty of Sciences, King Abdulaziz University) ;
  • Mohamed A. Korish (Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University) ;
  • Youssef A. Attia (Agriculture Department, Faculty of Environmental Sciences, King Abdulaziz University) ;
  • Sara H. M. Hassab (Animal, Poultry and Fish Production Department, Faculty of Agriculture, Damietta University)
  • Received : 2023.07.03
  • Accepted : 2023.11.02
  • Published : 2024.05.01

Abstract

Objective: The potential of aqueous extract of Christ's thorn jujube (Ziziphus spina-christi) leaves (SLAE) to reduce the negative impacts of heat stress on production performance and physiological traits was investigated in dual-purpose layers under subtropical farming. Methods: A total of 200, 25-week-old laying hens (Inshas strain) were randomly assigned to four dietary treatments including SLAE at 0, 2.5, 5.0, and 7.5 mL/kg, respectively. The average temperature-humidity index value was 26.69 during the experimental period. The SLAE contained saponin (0.045%), total flavonoid content of 17.9 mg of quercetin equivalent/100 g and overall antioxidant capacity concentration of 17.9 mg of ascorbic acid equivalent/100 g. Results: The maximum final body weight (BW), BW gain, egg weight, number, and mass occurred at the level of SLAE7.5 inclusion. The egg quality was significantly higher in SLAE groups than in control, and overall, SLAE7.5 had the most favorable influence at 28 and 32 weeks. Liver and kidney function, as well as lipids profile, improved significantly by SLAE inclusion; the lowest concentrations of these parameters were in SLAE7.5 hens. Treatment with SLAE7.5 increased total antioxidant capacity and endogenous antioxidant enzymes compared to control, whereas no effect on superoxide dismutase was noticed. Conclusion: The addition of SLAE at 7.5 mL/kg diet improved egg laying performance and quality, metabolic profiles, and antioxidant status during hyperthermia conditions.

Keywords

Acknowledgement

This research work was funded by Researchers Supporting Project No. RSPD2024R581, King Saud University, Riyadh, Saudi Arabia.

References

  1. Abioja MO, Adekunle MO. Climate change: Depression in egg production in chickens during the hot season with longterm honey administration. In: Leal Filho W, editor. Handbook of Climate Change Resilience. Cham, Switzerland: Springer International Publishing; 2020. pp. 717-27. https://doi.org/10.1007/978-3-319-93336-8_15
  2. Sirajuddin SN, Lestari VS, Saleh IM, Sara U, Kasim J. Effect of climate change on laying hen farms. Int J Sci Basic Appl Res 2017;32:206-14.
  3. Ajakaiye JJ, Perez-Bello A, Mollineda-Trujillo A. Impact of heat stress on egg quality in layer hens supplemented with l-ascorbic acid and dl-tocopherol acetate. Vet Arh 2011;81:119-32.
  4. Sahin K, Orhan C, Smith MO, Sahin N. Molecular targets of dietary phytochemicals for the alleviation of heat stress in poultry. Worlds Poult Sci J 2013;69:113-24. https://doi.org/10.1017/S004393391300010X
  5. Zaviezo R. Nutritional management of birds affected by heat. Rev Indust Avic 1999;46:42-6.
  6. Lin WC, Lee MT, Chang SC, et al. Effects of mulberry leaves on production performance and the potential modulation of antioxidative status in laying hens. Poult Sci 2017;96:1191-203. https://doi.org/10.3382/ps/pew350
  7. Surh YJ, Na HK. NF-κB and Nrf2 as prime molecular targets for chemoprevention and cytoprotection with anti-inflammatory and antioxidant phytochemicals. Genes Nutr 2008;2: 313-7. https://doi.org/10.1007/s12263-007-0063-0
  8. Giannenas I, Pappas IS, Mavridis S, Kontopidis G, Skoufos J, Kyriazakis I. Performance and antioxidant status of broiler chickens supplemented with dried mushrooms (Agaricus bisporus) in their diet. Poult Sci 2010;89:303-11. https://doi.org/10.3382/ps.2009-00207
  9. Fotina AA, Fisinin VI, Surai PF. Recent developments in usage of natural antioxidants to improve chicken meat production and quality. Bulg J Agric Sci 2013;19:889-96.
  10. Vivi T. Student's Flora of Egypt, 2nd ed., Cairo, Egypt: Cairo University; 1974. pp. 293-300.
  11. Adeli M, Samavati V. Studies on the steady shear flow behavior and chemical properties of water-soluble polysaccharide from Ziziphus lotus fruit. Int J Biol Macromol 2015;72:580-7. https://doi.org/10.1016/j.ijbiomac.2014.08.047
  12. Adzu B, Amos S, Wambebe C, Gamaniel K. Antinociceptive activity of Zizyphus spina-christi root bark extract. Fitoterapia 2001;72:344-50. https://doi.org/10.1016/S0367-326X(00)00289-6
  13. Ibraheem AA. Using natural polyphenol extracts of sider (Zizyphus spina-christi L.) leaves and seeds as anti-microbial. Middle East J Appl Sci 2017;7:262-71.
  14. Waqar AK, Naveed M, Haroon K, Abdur R. Pharmacological and phytochemical studies of genus Zizyphus. Middle-East J Sci Res 2014;21:1243-63. https://doi.org/10.5829/idosi.mejsr.2014.21.08.2109
  15. Abd-Alrahman SH, Salem-Bekhit MM, Elhalwagy MEA, Abdel-Mageed WM, Radwan AA. Phytochemical screening and antimicrobial activity of EthOH/water Ziziphus jujuba seeds extracts. J Pure Appl Microbiol 2013;7:813-8.
  16. Abu-Taleb AM, El-Deeb K, Al-Otibi FO. Assessment of antifungal activity of Rumex vesicarius L. and Ziziphus spinachristi (L.) Willd. extracts against two phytopathogenic fungi. Afr J Microbiol Res 2011;5:1001-11. https://doi.org/10.5897/AJMR10.826
  17. Mishra T, Khullar M, Bhatia A. Anticancer potential of aqueous ethanol seed extract of Ziziphus mauritiana against cancer cell lines and Ehrlich ascites carcinoma. Evidence-Based Complement Alternat Med 2011;2011:765029. https://doi.org/10.1155/2011/765029
  18. Khaleel SMJ, Jaran AS, Haddadin MSY. Evaluation of total phenolic content and antioxidant activity of three leaf extracts of Ziziphus spina-christi (Sedr) grown in Jordan. J Adv Med Med Res 2016;14:1-8. https://doi.org/10.9734/BJMMR/2016/24935
  19. Yossef HE, Khedr AA, Mahran MZ. Hepatoprotective activity and antioxidant effects of El Nabka (Zizyphus spina-christi) fruits on rats hepatotoxicity induced by carbon tetrachloride. Nat Sci 2011;9:2.
  20. Shahat AA, Pieters L, Apers S, et al. Chemical and biological investigations on Zizyphus spina-christi L. Phyther Res 2001; 15:593-7. https://doi.org/10.1002/ptr.883
  21. Akdemir F, Orhan C, Sahin N, Sahin K, Hayirli A. Tomato powder in laying hen diets: effects on concentrations of yolk carotenoids and lipid peroxidation. Br Poult Sci 2012;53:675-80. https://doi.org/10.1080/00071668.2012.729142
  22. Al-Sieni AI, El Rabey HA, Al-Seeni MN. The aqueous extract of Christ's thorn (Ziziphus spina-christi) seed modulates hyperlipidemia in hypercholesterolemic male rat. Biomed Res 2020;31:71-8.
  23. Mohammed GT, Yesufu HB, Abdulrahman FI, et al. Antimicrobial and toxicological screening of the aqueous stem bark extract of Zizyphus spina-christi (Linnaeus Desf). J Microbiol Biotechnol Res 2012;2:337-42.
  24. Chothani DL, Patel NM. Preliminary phytochemical screening, pharmacognostic and physicochemical evaluation of leaf of Gmelina arborea. Asian Pac J Trop Biomed 2012;2:S1333-7. https://doi.org/10.1016/S2221-1691(12)60411-0
  25. Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 1999;269:337-41. https://doi.org/10.1006/abio.1999.4019
  26. Arvouet-Grand A, Vennat B, Pourrat A, Legret P. Standardization of propolis extract and identification of principal constituents. J Pharm Belg 1994;49:462-8.
  27. National Research Council. Nutrient requirements of poultry. National Academies Press; 1994.
  28. AOAC, Horwitz W. Official Methods of Analysis of the AOAC International. Arlington, VA, USA: AOAC; 2000.
  29. Zulovich JM, DeShazer JA. Estimating egg production declines at high environmental temperatures and humidities. Pap ASAE 1990;90:4021.
  30. Carr WJ, Maradudin AA. Ground-state energy of a highdensity electron gas. Phys Rev 1964;133:A371-4. https://doi.org/10.1103/PhysRev.133.A371
  31. Doumas J, Maume BF. Metabolic activation by adrenal tissue in rats of a liver carcinogen: safrole. C R Seances Soc Biol Fil 1977;171:108-14.
  32. Botsoglou NA, Fletouris DJ, Papageorgiou GE, Vassilopoulos VN, Mantis AJ, Trakatellis AG. Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. J Agric Food Chem 1994;42:1931-7. https://doi.org/10.1021/jf00045a019
  33. Elomda AM, Saad MF, Saeed AM, et al. Antioxidant and developmental capacity of retinol on the in vitro culture of rabbit embryos. Zygote 2018;26:326-32. https://doi.org/10.1017/S0967199418000308
  34. Temerk H, Salem W, Sayed W, Hassan FS. Antibacterial effect of phytochemical extracts from Ziziphus-spina christi against some pathogenic bacteria. Egypt J Bot 2017;57:595-604. https://doi.org/10.21608/ejbo.2017.665.1035
  35. Iskender H, Yenice G, Dokumacioglu E, Kaynar O, Hayirli A, Kaya A. The effects of dietary flavonoid supplementation on the antioxidant status of laying hens. Rev Bras Cienc Avic 2016;18:663-8. https://doi.org/10.1590/1806-9061-2016-0356
  36. Taghipour MT, Nameni R, Taghipour M, Ghorat F. Phytochemical analysis and antimicrobial activity of Ziziphus spinachristi and Tamarix aphylla leaves' extracts as effective treatment for Coronavirus Disease 2019 (COVID-19). Thrita 2020;9:e107776. https://doi.org/10.5812/thrita.107776
  37. El Maaiden E, El Kharrassi Y, Lamaoui M, et al. Variation in minerals, poly-phenolics and antioxidant activity of pulp, seed and almond of different Ziziphus species grown in Morocco. Braz J Food Technol 2020;23:e2019206. https://doi.org/10.1590/1981-6723.20619
  38. Suarez J, Herrera MD, Marhuenda E. In vitro scavenger and antioxidant properties of hesperidin and neohesperidin dihydrochalcone. Phytomedicine 1998;5:469-73. https://doi.org/10.1016/S0944-7113(98)80044-5
  39. Tirkey N, Pilkhwal S, Kuhad A, Chopra K. Hesperidin, a citrus bioflavonoid, decreases the oxidative stress produced by carbon tetrachloride in rat liver and kidney. BMC Pharmacol 2005;5:2. https://doi.org/10.1186/1471-2210-5-2
  40. Yang SL, Yang RC, Zhou X, et al. Effects of dietary supplementation of flavonoids from Moringa leaves on growth and laying performance, immunological and antioxidant activities in laying ducks. J Appl Poult Res 2023;32:100318. https://doi.org/10.1016/J.JAPR.2022.100318
  41. Hussein AS. Ziziphus spina-christi: Analysis of bioactivities and chemical composition. In: Wild Fruits: Composition, Nutritional Value and Products. Cham, Switzerland: Springer International Publishing; 2019. pp. 175-97. https://doi.org/10.1007/978-3-030-31885-7_15
  42. Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999;12:564-82. https://doi.org/10.1128/CMR.12.4.564
  43. Mori A, Nishino C, Enoki N, Tawata S. Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochemistry 1987;26:2231-4. https://doi.org/10.1016/S0031-9422(00)84689-0
  44. Haraguchi H, Tanimoto K, Tamura Y, Mizutani K, Kinoshita T. Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata. Phytochemistry 1998;48:125-9. https://doi.org/10.1016/S0031-9422(97)01105-9
  45. Cornescu GM, Panaite TD, Untea AE, et al. Mitigation of heat stress effects on laying hens' performances, egg quality and some blood parameters by adding dietary zinc-enriched yeasts, parsley and their combination. Front Vet Sci 2023;10:1202058. https://doi.org/10.3389/fvets.2023.1202058
  46. Teixeira EMB, Carvalho MRB, Neves VA, Silva MA, ArantesPereira L. Chemical characteristics and fractionation of proteins from Moringa oleifera Lam. leaves. Food Chem 2014;147:51-4. https://doi.org/10.1016/j.foodchem.2013.09.135
  47. Darmawan A, Hermana W, Suci DM, et al. Dietary phytogenic extracts favorably influence productivity, egg quality, blood constituents, antioxidant and immunological parameters of laying hens. A meta-analysis. Animals 2022;12:2278. https://doi.org/10.3390/ani12172278
  48. Gharaghani H, Shariatmadari F, Torshizi M. Effect of Fennel (Foeniculum Vulgare Mill.) used as a feed additive on the egg quality of laying hens under heat stress. Rev Bras Cienc Avic 2015;17:199-208. https://doi.org/10.1590/1516-635x1702199-208
  49. Abdel-Wareth AAA, Lohakare JD. Effect of dietary supplementation of peppermint on performance, egg quality, and serum metabolic profile of Hy-Line Brown hens during the late laying period. Anim Feed Sci Technol 2014;197:114-20. https://doi.org/10.1016/j.anifeedsci.2014.07.007
  50. Boka J, Mahdavi AH, Samie AH, Jahanian R. Effect of different levels of black cumin (Nigella sativa L.) on performance, intestinal Escherichia coli colonization and jejunal morphology in laying hens. J Anim Physiol Anim Nutr (Berl) 2014;98:373-83. https://doi.org/10.1111/jpn.12109
  51. Windisch W, Schedle K, Plitzner C, Kroismayr A. Use of phytogenic products as feed additives for swine and poultry. J Anim Sci 2008;86:E140-8. https://doi.org/10.2527/jas.2007-0459
  52. Amirshekari T, Ziaei N, Ghoreishi SM, Esfandiarpour E. The effects of adding aqueous extract and dried aerial part powder of Tribulus terrestris on productive performance and blood parameters of laying hens. J Appl Poult Res 2016; 25:145-55. https://doi.org/10.3382/japr/pfv072
  53. Bozkurt M, Kucukyilmaz K, Catli AU, Cinar M, Bintas E, Coven F. Performance, egg quality, and immune response of laying hens fed diets supplemented with mannan-oligosaccharide or an essential oil mixture under moderate and hot environmental conditions. Poult Sci 2012;91:1379-86. https://doi.org/10.3382/ps.2011-02023
  54. Oke OE, Ladokun AO, Onagbesan OM. Reproductive performance of layer chickens reared on deep litter system with or without access to grass or legume pasture. J Anim Physiol Anim Nutr (Berl) 2016;100:229-35. https://doi.org/10.1111/jpn.12353
  55. McMahon RJ. Biotin in metabolism and molecular biology. Annu Rev Nutr 2002;22:221-39. https://doi.org/10.1146/annurev.nutr.22.121101.112819
  56. Basyony M, Elsheikh H, Abdel Salam H, Mohamed K, Zedan A. Utilization of Ziziphus spina-christi leaves as a natural growth promoter in rabbit's rations. Egypt J Rabbit Sci 2017;27:427-46. https://doi.org/10.21608/ejrs.2017.46666
  57. Parsaeyan N, Rezvani ME. The effect of Christ's Thorn (Ziziphus Spina Christi) leaves extract on lipid profile, lipid peroxidation and liver enzymes of diabetic rats. Iran J Diab Obes 2014;6:163-7.
  58. Rehman ZU, Meng C, Sun Y, et al. Oxidative stress in poultry: Lessons from the viral infections. Oxid Med Cell Longev 2018;2018:5123147. https://doi.org/10.1155/2018/5123147
  59. Janmohammadi H, Hosseintabar-Ghasemabad B, Oliyai M, et al. Effect of dietary Amaranth (Amaranthus hybridus chlorostachys) supplemented with enzyme blend on egg quality, serum biochemistry and antioxidant status in laying hens. Antioxidants 2023;12:456. https://doi.org/10.3390/antiox12020456
  60. Andallu B, Shankaran M, Ullagaddi R, Iyer S. In vitro free radical scavenging and in vivo antioxidant potential of mulberry (Morus indica L.) leaves. J Herb Med 2014;4:10-7. https://doi.org/10.1016/j.hermed.2013.10.002
  61. Wang D, Huang H, Zhou L, et al. Effects of dietary supplementation with turmeric rhizome extract on growth performance, carcass characteristics, antioxidant capability, and meat quality of Wenchang broiler chickens. Ital J Anim Sci 2015;14:3870. https://doi.org/10.4081/ijas.2015.3870
  62. Rajesh N, Shankar MB, Deecaraman M. Effect of vitamin A supplementation at different gaseous environments on in vitro development of pre-implantation sheep embryos to the blastocyst stage. Animal 2010;4:1884-90. https://doi.org/10.1017/S1751731110001187
  63. Yarru LP, Settivari RS, Gowda NKS, Antoniou E, Ledoux DR, Rottinghaus GE. Effects of turmeric (Curcuma longa) on the expression of hepatic genes associated with biotransformation, antioxidant, and immune systems in broiler chicks fed aflatoxin. Poult Sci 2009;88:2620-7. https://doi.org/10.3382/ps.2009-00204
  64. Simunkova M, Barbierikova Z, Jomova K, et al. Anti-oxidant vs. prooxidant properties of the flavonoid, kaempferol, in the presence of Cu(II) ions: A ROS-scavenging activity, Fenton reaction and DNA damage study. Int J Mol Sci 2021;22:1619. https://doi.org/10.3390/ijms22041619
  65. Jomova K, Lawson M, Drostinova L, et al. Protective role of quercetin against copper(II)-induced oxidative stress: A spectroscopic, theoretical and DNA damage study. Food Chem Toxicol 2017;110:340-50. https://doi.org/10.1016/j.fct.2017.10.042
  66. Singh V, Guizani N, Essa MM, Rahman MS, Selvaraju S. In vitro antioxidant activities of Ziziphus spina-christi Fruits (Red Date) grown in Oman. Biotechnology 2012;11:209-16. https://doi.org/10.3923/biotech.2012.209.216
  67. Basile A, Ferrara L, Del Pezzo M, et al. Antibacterial and antioxidant activities of ethanol extract from Paullinia cupana Mart. J Ethnopharmacol 2005;102:32-6. https://doi.org/10.1016/j.jep.2005.05.038