DOI QR코드

DOI QR Code

β-Nicotinamide mononucleotide improves chilled ram sperm quality in vitro by reducing oxidative stress damage

  • Zhendong Zhu (College of Animal Science and Technology, Qingdao Agricultural University) ;
  • Haolong Zhao (College of Animal Science and Technology, Qingdao Agricultural University) ;
  • Qitai Yang (College of Animal Science and Technology, Qingdao Agricultural University) ;
  • Yajing Li (College of Animal Science and Technology, Qingdao Agricultural University) ;
  • Ruyuan Wang (College of Animal Science and Technology, Qingdao Agricultural University) ;
  • Adedeji Olufemi Adetunji (Department of Agriculture, University of Arkansas at Pine Bluff) ;
  • Lingjiang Min (College of Animal Science and Technology, Qingdao Agricultural University)
  • Received : 2023.09.23
  • Accepted : 2024.01.13
  • Published : 2024.05.01

Abstract

Objective: The present study aimed to investigate the effect of β-nicotinamide mononucleotide (NMN) supplementation on ram sperm quality during storage at 4℃ in vitro. Methods: Tris-citric acid-glucose solution containing different doses of NMN (0, 30, 60, 90, and 120 µM) was used to dilute semen collected from rams and it was stored at 4℃. Sperm motility, plasma membrane integrity as well as acrosome integrity were evaluated at 0, 24, and 48 h time points after storage at 4℃. In addition, sperm mitochondrial activity, lipid peroxidation (LPO), malondialdehyde (MDA) content, reactive oxygen species (ROS) content, glutathione (GSH) content, superoxide dismutase (SOD) activity, and apoptosis were measured at 48 h time point after storage at 4℃. Results: Results demonstrate that the values obtained for sperm motility, acrosome integrity, and plasma membrane integrity in the NMN treatments were significantly higher than control (p<0.05). The addition of 60 µM NMN significantly improved ram sperm mitochondrial activity and reduced LPO, MDA content, and ROS content compared to control (p<0.05). Interestingly, sperm GSH content and SOD activity for the 60 µM NMN treatment were much higher than those observed for control. NMN treatment also decreased the level of Cleaved-Caspase 3, Cleaved-Caspase 9, and Bax while increasing Bcl-2 level in sperm at 48 h time point after storage at 4℃. Conclusion: Ram sperm quality can be maintained during storage at 4℃ with the addition of NMN at 60 µM to the semen extender. NMN also reduces oxidative stress and apoptosis. Overall, these findings suggest that NMN is efficient in improving the viability of ram sperm during storage at 4℃ in vitro.

Keywords

Acknowledgement

This work was supported in part by the Young Innovation Team Plan Program of Higher Education of Shandong Province Project for Z Zhu (2022KJ170), Technology System of Modern Agricultural Industry in Shandong Province (SDAIT-10-08) for L Min, and the Start-up Fund for High-level Talents of Qingdao Agricultural University for Z Zhu (1121010).

References

  1. Robertson A. Artificial insemination and livestock improvement. Adv Genet 1954;6:451-72. https://doi.org/10.1016/s0065-2660(08)60134-0 
  2. Alvarez M, Anel-Lopez L, Boixo JC, et al. Current challenges in sheep artificial insemination: a particular insight. Reprod Domest Anim 2019;54 (Suppl 4):32-40. https://doi.org/10.1111/rda.13523 
  3. Wishart GJ. Cryopreservation of avian spermatozoa. Methods Mol Biol 1995;38:167-77. https://doi.org/10.1385/0-89603-296-5:167 
  4. Al-Bulushi S, Manjunatha BM, Bathgate R, Rickard JP, de Graaf SP. Artificial insemination with fresh, liquid stored and frozen thawed semen in dromedary camels. PLoS One 2019;14:e0224992. https://doi.org/10.1371/journal.pone.0224992 
  5. Gibbons AE, Fernandez J, Bruno-Galarraga MM, Spinelli MV, Cueto MI. Technical recommendations for artificial insemination in sheep. Anim Reprod 2019;16:803-9. https://doi.org/10.21451/1984-3143-AR2018-0129 
  6. Sieme H, Oldenhof H, Wolkers WF. Sperm membrane behaviour during cooling and cryopreservation. Reprod Domest Anim 2015;50(Suppl 3):20-6. https://doi.org/10.1111/rda.12594 
  7. Druart X, Cognie J, Baril G, Clement F, Dacheux J, Gatti JL. In vivo imaging of in situ motility of fresh and liquid stored ram spermatozoa in the ewe genital tract. Reproduction 2009; 138:45-53. https://doi.org/10.1530/REP-09-0108 
  8. Sadeghi N, Boissonneault G, Tavalaee M, Nasr-Esfahani MH. Oxidative versus reductive stress: a delicate balance for sperm integrity. Syst Biol Reprod Med 2023;69:20-31. https://doi.org/10.1080/19396368.2022.2119181 
  9. Foutouhi A, Meyers S. Comparative oxidative metabolism in mammalian sperm. Anim Reprod Sci 2022;247:107095. https://doi.org/10.1016/j.anireprosci.2022.107095 
  10. Javaheri Barfourooshi H, Asadzadeh N, Masoudi R. The mitochondria-targeted antioxidant "MitoQ" preserves quality and reproductive performance of ram spermatozoa cryopreserved in soybean lecithin-based extender. Theriogenology 2023;208:71-6. https://doi.org/10.1016/j.theriogenology.2023.05.032 
  11. Wang Y, Zhang L, Sohail T, Kang Y, Sun X, Li Y. Chlorogenic acid improves quality of chilled ram sperm by mitigating oxidative stress. Animals 2022;12:163. https://doi.org/10.3390/ani12020163 
  12. Silva ECB, Cajueiro JFP, Silva SV, Soares PC, Guerra MMP. Effect of antioxidants resveratrol and quercetin on in vitro evaluation of frozen ram sperm. Theriogenology 2012;77:1722-6. https://doi.org/10.1016/j.theriogenology.2011.11.023 
  13. Zhao Y, Zhang P, Ge W, et al. Alginate oligosaccharides improve germ cell development and testicular microenvironment to rescue busulfan disrupted spermatogenesis. Theranostics 2020;10:3308-24. https://doi.org/10.7150/thno.43189 
  14. Wang L, Zhao M, Qian R, et al. Nicotinamide mononucleotide ameliorates silica-induced lung injury through the Nrf2-regulated glutathione metabolism pathway in mice. Nutrients 2022;15:143. https://doi.org/10.3390/nu15010143 
  15. Nadeeshani H, Li J, Ying T, Zhang B, Lu J. Nicotinamide mononucleotide (NMN) as an anti-aging health product - promises and safety concerns. J Adv Res 2022;37:267-78. https://doi.org/10.1016/j.jare.2021.08.003 
  16. Alam F, Syed H, Amjad S, et al. Interplay between oxidative stress, SIRT1, reproductive and metabolic functions. Curr Res Physiol 2021;4:119-24. https://doi.org/10.1016/j.crphys.2021.03.002 
  17. Croteau DL, Fang EF, Nilsen H, Bohr VA. NAD(+) in DNA repair and mitochondrial maintenance. Cell Cycle 2017;16:491-2. https://doi.org/10.1080/15384101.2017.1285631 
  18. Zhang W, Li Y, Zhu Z. Carboxylated epsilon-poly-L-lysine supplementation of the freezing extender improves the post-thawing boar sperm quality. Animals 2022;12:1726. https://doi.org/10.3390/ani12131726 
  19. Dziekonska A, Neuman NM, Burdal KK, WiszniewskaLaszczych A, Bogdaszewski M. The effect of different extenders on the quality characteristics of European red deer epididymal sperm stored at 5 degrees C. Animals 2022;12:2669. https://doi.org/10.3390/ani12192669 
  20. Zhu Z, Zeng Y, Zeng W. Cysteine improves boar sperm quality via glutathione biosynthesis during the liquid storage. Anim Biosci 2022;35:166-76. https://doi.org/10.5713/ab.21.0151 
  21. Li R, Wu X, Zhu Z, et al. Polyamines protect boar sperm from oxidative stress in vitro. J Anim Sci 2022;100:skac069. https://doi.org/10.1093/jas/skac069 
  22. Zhang W, Cui H, Ding K, et al. Carboxylated epsilon-poly-L-lysine improves post-thaw quality, mitochondrial functions and antioxidant defense of goat cryopreserved sperm. Biology (Basel) 2023;12:231. https://doi.org/10.3390/biology12020231 
  23. Zhu Z, Kawai T, Umehara T, et al. Negative effects of ROS generated during linear sperm motility on gene expression and ATP generation in boar sperm mitochondria. Free Radic Biol Med 2019;141:159-71. https://doi.org/10.1016/j.freeradbiomed.2019.06.018 
  24. Yamaura K, Mifune Y, Inui A, et al. Antioxidant effect of nicotinamide mononucleotide in tendinopathy. BMC Musculoskelet Disord 2022;23:249. https://doi.org/10.1186/s12891-022-05205-z 
  25. Fernandes GHC, de Carvalho Pde T, Serra AJ, et al. The effect of low-level laser irradiation on sperm motility, and integrity of the plasma membrane and acrosome in cryopreserved bovine sperm. PLoS One 2015;10:e0121487. https://doi.org/10.1371/journal.pone.0121487 
  26. Kiss T, Nyul-Toth A, Balasubramanian P, et al. Nicotinamide mononucleotide (NMN) supplementation promotes neurovascular rejuvenation in aged mice: transcriptional footprint of SIRT1 activation, mitochondrial protection, anti-inflammatory, and anti-apoptotic effects. Geroscience 2020;42:527-46. https://doi.org/10.1007/s11357-020-00165-5 
  27. Youngson NA, Uddin GM, Das A, et al. Impacts of obesity, maternal obesity and nicotinamide mononucleotide supplementation on sperm quality in mice. Reproduction 2019;158: 169-79. https://doi.org/10.1530/REP-18-0574 
  28. Miao Y, Cui Z, Gao Q, Rui R, Xiong B. Nicotinamide mononucleotide supplementation reverses the declining quality of maternally aged oocytes. Cell Rep 2020;32:107987. https://doi.org/10.1016/j.celrep.2020.107987 
  29. Chakrabarty RP, Chandel NS. Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 2021;28:394-408. https://doi.org/10.1016/j.stem.2021.02.011 
  30. Jayaram HN, Kusumanchi P, Yalowitz JA. NMNAT expression and its relation to NAD metabolism. Curr Med Chem 2011; 18:1962-72. https://doi.org/10.2174/092986711795590138 
  31. Di Emidio G, Falone S, Artini PG, Amicarelli F, D'Alessandro AM, Tatone C. Mitochondrial sirtuins in reproduction. Antioxidants (Basel) 2021;10:1047. https://doi.org/10.3390/antiox10071047 
  32. Lawson M, Uciechowska U, Schemies J, Rumpf T, Jung M, Sippl W. Inhibitors to understand molecular mechanisms of NAD(+)-dependent deacetylases (sirtuins). Biochim Biophys Acta Gene Regul Mech 2010;1799:726-39. https://doi.org/10.1016/j.bbagrm.2010.06.003 
  33. Bowker Z, Goldstein S, Breitbart H. Protein acetylation protects sperm from spontaneous acrosome reaction. Theriogenology 2022;191:231-8. https://doi.org/10.1016/j.theriogenology.2022.08.005 
  34. Carro M, Luquez JM, Penalva DA, Buschiazzo J, Hozbor FA, Furland NE. PUFA-rich phospholipid classes and subclasses of ram spermatozoa are unevenly affected by cryopreservation with a soybean lecithin-based extender. Theriogenology 2022;186:122-34. https://doi.org/10.1016/j.theriogenology.2022.03.035 
  35. Akbarinejad V, Fathi R, Shahverdi A, Esmaeili V, Rezagholizadeh A, Ghaleno LR. The relationship of mitochondrial membrane potential, reactive oxygen species, adenosine triphosphate content, sperm plasma membrane integrity, and kinematic properties in warmblood stallions. J Equine Vet Sci 2020;94: 103267. https://doi.org/10.1016/j.jevs.2020.103267 
  36. O'Flaherty C. Redox regulation of mammalian sperm capacitation. Asian J Androl 2015;17:583-90. https://doi.org/10.4103/1008-682X.153303 
  37. Edlich F. BCL-2 proteins and apoptosis: recent insights and unknowns. Biochem Biophys Res Commun 2018;500:26-34. https://doi.org/10.1016/j.bbrc.2017.06.190 
  38. Afkhami-Ardakani M, Hasanzadeh S, Shahrooz R, Delirezh N, Malekinejad H. Spirulina platensis (Arthrospira platensis) attenuates Cyclophosphamide-induced reproductive toxicity in male Wistar rats: evidence for sperm apoptosis and p53/Bcl-2 expression. J Food Biochem 2021;45:e13854. https://doi.org/10.1111/jfbc.13854 
  39. Lv YQ, Ji S, Chen X, et al. Effects of crocin on frozen-thawed sperm apoptosis, protamine expression and membrane lipid oxidation in Yanbian yellow cattle. Reprod Domest Anim 2020;55:1011-20. https://doi.org/10.1111/rda.13744 
  40. Kuida K. Caspase-9. Int J Biochem Cell Biol 2000;32:121-4. https://doi.org/10.1016/s1357-2725(99)00024-2 
  41. Yu Y, Wu X, Pu J, et al. Lycium barbarum polysaccharide protects against oxygen glucose deprivation/reoxygenation-induced apoptosis and autophagic cell death via the PI3K/Akt/mTOR signaling pathway in primary cultured hippocampal neurons. Biochem Biophys Res Commun 2018;495:1187-94. https://doi.org/10.1016/j.bbrc.2017.11.165 
  42. Circu ML, Aw TY. Glutathione and modulation of cell apoptosis. Biochim Biophys Acta Mol Cell Res 2012;1823:1767-77. https://doi.org/10.1016/j.bbamcr.2012.06.019