DOI QR코드

DOI QR Code

Identification of new major histocompatibility complex-B Haplotypes in Bangladesh native chickens

  • Thisarani Kalhari Ediriweera (Department of Bio-AI Convergence, Chungnam National University) ;
  • Prabuddha Manjula (Department of Animal Science, Uva Wellassa University) ;
  • Jaewon Kim (Division of Animal and Dairy Science, Chungnam National University) ;
  • Jin Hyung Kim (Division of Animal and Dairy Science, Chungnam National University) ;
  • Seonju Nam (Division of Animal and Dairy Science, Chungnam National University) ;
  • Minjun Kim (Division of Animal and Dairy Science, Chungnam National University) ;
  • Eunjin Cho (Department of Bio-AI Convergence, Chungnam National University) ;
  • Mohammad Shamsul Alam Bhuiyan (Department of Animal Breeding and Genetics, Bangladesh Agricultural University) ;
  • Md. Abdur Rashid (Poultry Production Research Division, Bangladesh Livestock Research Institute) ;
  • Jun Heon Lee (Department of Bio-AI Convergence, Chungnam National University)
  • 투고 : 2023.08.11
  • 심사 : 2023.12.15
  • 발행 : 2024.05.01

초록

Objective: The major histocompatibility complex in chicken demonstrates a great range of variations within varities, breeds, populations and that can eventually influence their immuneresponses. The preset study was conducted to understand the major histocompatibility complex-B (MHC-B) variability in five major populations of Bangladesh native chicken: Aseel, Hilly, Junglefowl, Non-descript Deshi, and Naked Neck. Methods: These five major populations of Bangladesh native chicken were analyzed with a subset of 89 single nucleotide polymorphisms (SNPs) in the high-density MHC-B SNP panel and Kompetitive Allele-Specific polymerase chain reaction genotyping was applied. To explore haplotype diversity within these populations, the results were analyzed both manually and computationally using PHASE 2.1 program. The phylogenetic investigations were also performed using MrBayes program. Results: A total of 136 unique haplotypes were identified within these five Bangladesh chicken populations, and only one was shared (between Hilly and Naked Neck). Phylogenetic analysis showed no distinct haplotype clustering among the five populations, although they were shared in distinct clades; notably, the first clade lacked Naked Neck haplotypes. Conclusion: The present study discovered a set of unique MHC-B haplotypes in Bangladesh chickens that could possibly cause varied immune reponses. However, further investigations are required to evaluate their relationships with global chicken populations.

키워드

과제정보

This research was funded by a grant from the National Research Foundation, Republic of Korea (grant number 2022R1F1A1064025).

참고문헌

  1. Granevitze Z, Hillel J, Chen GH, et al. Genetic diversity within chicken populations from different continents and management histories. Anim Genet 2007;38:576-83. https://doi.org/10.1111/j.1365-2052.2007.01650.x 
  2. Niu D, Fu Y, Luo J, et al. The origin and genetic diversity of Chinese native chicken breeds. Biochem Genet 2002;40:16374. https://doi.org/10.1023/A:1015832108669 
  3. Kim M, Cho E, Cho S, Choo H, Jin D, Lee JH. A study on the conservation status of Korean native chicken populations. J Anim Breed Genom 2022;6:135-42. https://doi.org/10.12972/jabng.20220015 
  4. Uddin MH, Ali A, Akter Y, Khatun MA. Geographical distribution, classification, characterization and conservation of different native chicken varieties of Bangladesh. Bangladesh Res Publ J 2011;5:227-33. 
  5. Bhuiyan, MSA, Chen S, Faruque S, Bhuiyan AKFH, BejaPereira A. Genetic diversity and maternal origin of Bangladeshi chicken. Mol Biol Rep 2013;40:4123-8. https://doi.org/10.1007/s11033-013-2522-6 
  6. Islam MA, Osman SAM, Nishibori M. Genetic diversity of Bangladeshi native chickens based on complete sequence of mitochondrial DNA D-loop region. Br Poult Sci 2019;60:62837. https://doi.org/10.1080/00071668.2019.1655708 
  7. Sarker MJA, Bhuiyan MSA, Faruque MO, Ali MA, Lee JH. Phenotypic characterization of Aseel chicken of Bangladesh. Korean J Poult Sci 2012;39:9-15. https://doi.org/10.5536/KJPS.2012.39.1.009 
  8. Ali MH, Habib M, Bhuiyan MSA, Azad MAK, Hashem MA, Ali MS. Meat yield and meat quality characteristics of backcrossed Sonali chicken compared to Aseel♂× Sonali♀ and Hilly♂× Sonali♀ crossbreds. Meat Res 2022;2:24. https://doi.org/10.55002/mr.2.3.24 
  9. Hamid MA. Chicken germplasms and their conservation in Bangladesh: a review. SAARC J Agric 2019;17:119-34. https://doi.org/10.3329/sja.v17i1.42766 
  10. Shahjahan M. The status of laying traits in indigenous chicken of Bangladesh: a review. Agric Rev 2021;42:247-56. https://doi.org/10.18805/ag.R-185 
  11. Hamid MA. Biological diversity of farm animals in Bangladesh: a review. SAARC J Agric 2019;17:15-29. https://doi.org/10.3329/sja.v17i2.45291 
  12. Rashid MA, Manjula P, Faruque S, et al. Genetic diversity and population structure of indigenous chicken of Bangladesh using microsatellite markers. Asian-Australas J Anim Sci 2020;33:1732-40. https://doi.org/10.5713/ajas.20.0189 
  13. Ediriweera TK, Manjula P, Cho E, Kim M, Lee JH. Application of next-generation sequencing for the high-resolution typing of MHC-B in Korean native chicken. Front Genet 2022;13: 886376. https://doi.org/10.3389/fgene.2022.886376 
  14. Vu TH, Hong Y, Truong AD, et al. Cytokine-cytokine receptor interactions in the highly pathogenic avian influenza H5N1 virus-infected lungs of genetically disparate Ri chicken lines. Anim Biosci 2022;35:367-76. https://doi.org/10.5713/ab.21.0163 
  15. Delany ME, Robinson CM, Goto RM, Miller MM. Architecture and organization of chicken microchromosome 16: order of the NOR, MHC-Y, and MHC-B subregions. J Hered 2009;100:507-14. https://doi.org/10.1093/jhered/esp044 
  16. Briles WE, McGibbon WH, Irwin MR. On multiple alleles effecting cellular antigens in the chicken. Genetics 1950;35: 633-52. https://doi.org/10.1093/genetics/35.6.633 
  17. Livant EJ, Brigati JR, Ewald SJ. Diversity and locus specificity of chicken MHC B class I sequences. Anim Genet 2004;35: 18-27. https://doi.org/10.1111/j.1365-2052.2003.01078.x 
  18. Shiina T, Briles WE, Goto RM, et al. Extended gene map reveals tripartite motif, C-type lectin, and Ig superfamily type genes within a subregion of the chicken MHC-B affecting infectious disease. J Immunol 2007;178:7162-72. https://doi.org/10.4049/jimmunol.178.11.7162 
  19. Fulton JE, McCarron AM, Lund AR, et al. A high-density SNP panel reveals extensive diversity, frequent recombination and multiple recombination hotspots within the chicken major histocompatibility complex B region between BG2 and CD1A1. Genet Sel Evol 2016;48:1. https://doi.org/10.1186/s12711-015-0181-x 
  20. Fulton JE, Berres ME, Kantanen J, Honkatukia M. MHC-B variability within the Finnish Landrace chicken conservation program. Poult Sci 2017;96:3026-30. https://doi.org/10.3382/ps/pex102 
  21. Iglesias GM, Canet ZE, Cantaro H, et al. Mhc-B haplotypes in "Campero-Inta" chicken synthetic line. Poult Sci 2019;98: 5281-6. https://doi.org/10.3382/ps/pez431 
  22. Iglesias GM, Beker MP, Remolins JS, et al. MHC-B variation in maternal and paternal synthetic lines of the Argentinian Campero INTA chicken. Poult Sci 2021;100:101253. https://doi.org/10.1016/j.psj.2021.101253 
  23. Manjula P, Fulton JE, Seo D, Lee JH. Major histocompatibility complex B variability in Korean native chicken breeds. Poult Sci 2020;99:4704-13. https://doi.org/10.1016/j.psj.2020.05.049 
  24. Manjula P, Fulton JE, Seo D, Lee JH. Comparison of major histocompatibility complex-B variability in Sri Lankan indigenous chickens with five global chicken populations using MHC-B SNP panel. Anim Genet 2021;52:824-33. https://doi.org/10.1111/age.13137 
  25. Tarrant KJ, Lopez R, Loper M, Fulton JE. Assessing MHC-B diversity in Silkie chickens. Poult Sci 2020;99:2337-41. https://doi.org/10.1016/j.psj.2020.01.005 
  26. Nguyen-Phuc H, Fulton JE, Berres ME. Genetic variation of major histocompatibility complex (MHC) in wild Red Junglefowl (Gallus gallus). Poult Sci 2016;95:400-11. https://doi.org/10.3382/ps/pev364