DOI QR코드

DOI QR Code

B-spline polynomials models for analyzing growth patterns of Guzerat young bulls in field performance tests

  • 투고 : 2023.07.29
  • 심사 : 2023.11.15
  • 발행 : 2024.05.01

초록

Objective: The aim of this study was to identify suitable polynomial regression for modeling the average growth trajectory and to estimate the relative development of the rib eye area, scrotal circumference, and morphometric measurements of Guzerat young bulls. Methods: A total of 45 recently weaned males, aged 325.8±28.0 days and weighing 219.9±38.05 kg, were evaluated. The animals were kept on Brachiaria brizantha pastures, received multiple supplementations, and were managed under uniform conditions for 294 days, with evaluations conducted every 56 days. The average growth trajectory was adjusted using ordinary polynomials, Legendre polynomials, and quadratic B-splines. The coefficient of determination, mean absolute deviation, mean square error, the value of the restricted likelihood function, Akaike information criteria, and consistent Akaike information criteria were applied to assess the quality of the fits. For the study of allometric growth, the power model was applied. Results: Ordinary polynomial and Legendre polynomial models of the fifth order provided the best fits. B-splines yielded the best fits in comparing models with the same number of parameters. Based on the restricted likelihood function, Akaike's information criterion, and consistent Akaike's information criterion, the B-splines model with six intervals described the growth trajectory of evaluated animals more smoothly and consistently. In the study of allometric growth, the evaluated traits exhibited negative heterogeneity (b<1) relative to the animals' weight (p<0.01), indicating the precocity of Guzerat cattle for weight gain on pasture. Conclusion: Complementary studies of growth trajectory and allometry can help identify when an animal's weight changes and thus assist in decision-making regarding management practices, nutritional requirements, and genetic selection strategies to optimize growth and animal performance.

키워드

과제정보

The authors thank Minas Gerais Zebu Breeders Association (AMCZ) for allowing the use of databases for this study. Fundacao de Amparo a Pesquisa do Estado de Minas Gerais - FAPEMIG funded facilities for this research (APQ-02890-11).

참고문헌

  1. Ferreira JL, Bresolin T, Lopes FB, et al. Random regression models for growth trait in guzera cattle. Cienc Anim Bras 2017;18:e-39566. https://doi.org/10.1590/1089-6891v18e39566
  2. Peixoto MGCD, Carvalho MRS, Egito AA, et al. Genetic diversity and population genetic structure of a Guzera (Bos indicus) meta-population. Animals 2021;11:1125. https://doi.org/10.3390/ani11041125
  3. Peixoto MGCD, Poggian CF, Verneque RS, et al. Genetic basis and inbreeding in the Brazilian Guzerat (Bos indicus) subpopulation selected for milk production. Livest Sci 2010;131:168-74. https://doi.org/10.1016/j.livsci.2010.03.015
  4. Lawrence TLJ, Fowler VR. Growth of farm animals. New York, USA: CABI Publishing; 2002, 347 p.
  5. Hozakova K, Vavrisinova K, Neirurerova P, et al. Growth of beef cattle as a prediction for meat production: a review. Acta Fytot Zootec 2020;23:58-69. https://doi.org/10.15414/afz.2020.23.02.58-69
  6. Meyer K. Random regression analyses using B-splines to model growth of Australian Angus cattle. Genet Selec Evol 2005;37: 473. https://doi.org/10.1186/1297-9686-37-6-473
  7. Baldi F, Albuquerque LG, Alencar MM. Random regression models on Legendre polynomials to estimate genetic parameters for weights from birth to adult age in Canchim cattle. J Anim Breed Genet 2010;127:289-99. https://doi.org/10.1111/j.1439-0388.2010.00853.x
  8. Scalez DCB, Fragomeni BO, Passafaro TL, Pereira IG, Toral FLB. Polynomials to model the growth of young bulls in performance tests. Animal 2014;8:370-8. https://doi.org/10.1017/S1751731113002334
  9. Bertipaglia TS, Carreno LOD, Aspilcueta-Borquis RR, et al. Estimates of genetic parameters for growth traits in Brahman cattle using random regression and multitrait models. J Anim Sci 2015;93:3814-9. https://doi.org/10.2527/jas.2015-9164
  10. Scalez DCB, Fragomeni BO, Santos DCC, et al. Random regression models with B-splines to estimate genetic parameters for body weight of young bulls in performance tests. R Bras Zootec 2018;47:e20150300. https://doi.org/10.1590/rbz4720150300
  11. Misztal I. Properties of random regression models using linear splines. J Anim Breed Genet 2006;123:74-80. https://doi.org/10.1111/j.1439-0388.2006.00582.x
  12. Huxley JS. Problems of relative growth. London, UK: Methuen; 1932. 577 p.
  13. Furusho-Garcia IF, Perez JRO, Pereira IG, et al. Allometric study on carcass tissues from purebred Santa Ines lambs or crossbred with Texel, Ile de France and Bergamacia. R Bras Zootec 2009;38:539-46. https://doi.org/10.1590/S1516-35982009000300020
  14. Abramowitiz M, Stegun IA. Handbook of mathematical functions with formulas, graphs, and mathematical functions. 55th ed. New York, USA: National Bureau of Standard Applied Mathematics; 1965.
  15. De Sousa MAP, Lima ACS, Araujo JC, et al. Tissue composition and allometric growth of carcass of lambs Santa Ines and crossbreed with breed Dorper. Trop Anim Health Prod 2019;51:1903-8. https://doi.org/10.1007/s11250-019-01886-2
  16. Wesley KR, Kirkpatrick TJ, Pillmore SL, et al. PSI-3 allometric growth coefficients of non-carcass and carcass components of serially harvested implanted and non-implanted steers. J Anim Sci 2020;98 (Suppl 4):271-2. https://doi.org/10.1093/jas/skaa278.489
  17. SAS Institute. SAS/STAT 15.1 user's guide. Cary, NC, USA: SAS Institute Inc.; 2018.
  18. Kluska S, Baldi F, Olivieri BF, et al. Estimates of genetic parameters for growth, reproductive, and carcass traits in Nelore cattle using the single step genomic BLUP procedure. Livest Sci 2018;216:203-9. https://doi.org/10.1016/j.livsci.2018.08.015
  19. Mamede MMS, Rosa GJM, Eifert EC, et al. Estimating genetic parameters of reproductive, carcass, and meat quality traits in Polled Nellore cattle. Trop Anim Health Prod 2023;55:119. https://doi.org/10.1007/s11250-023-03541-3
  20. Grupioni Nv, Guidolin DGF, Venturini GC, et al. Genetic parameters and genetic trends for reproductive and testicular growth traits in Guzera cattle. Rev Caat 2015;28:152-60.
  21. Pereira LS, Brunes LC, Baldi F, et al. Genetic association between feed efficiency, growth, scrotal circumference, and carcass traits in Guzerat cattle. Trop Anim Health Prod 2013;55:132. https://doi.org/10.1007/s11250-023-03552-0
  22. Osorio JP, Marc H, Bergmann JAG, et al. Testicular development and puberty in guzerat males from weaning to 36 months of age raised at the Sierra Minera. Rev Med Vet 2012;24:9-24.
  23. Boligon AA, Mercadante MEZ, Lobo RB, Baldi F, Albuquerque LG. Random regression analyses using B-spline functions to model growth of Nellore cattle. Animal 2012;6:212-20. https://doi.org/10.1017/S1751731111001534
  24. Baldi F, Alencar MM, Albuquerque LG. Random regression analyses using B-splines functions to model growth from birth to adult age in Canchim cattle. J Anim Breed Genet 2010;127:433-41. https://doi.org/10.1111/j.1439-0388.2010.00873.x
  25. Siqueira JB, Guimaraes JD, Pinho RO. Relationship between scrotal circumference and productive and reproductive traits in beef cattle: a review. Rev Bras Reprod Anim 2013;37:3-13.
  26. Carrara ER, Peixoto MGCD, Veroneze R, et al. Genetic study of quantitative traits supports the use of Guzera as dualpurpose cattle. Anim Biosci 2022;35:955-63. https://doi.org/10.5713/ab.21.0458
  27. Franco MO, Marcondes MI, Campos JMS, et al. Evaluation of body weight prediction Equations in growing heifers. Acta Sci Anim Sci 2017;39:201-6. https://doi.org/10.4025/actascianimsci.v39i2.33118
  28. Fernandes HJ, Tedeschi LO, Paulino MF, et al. Determination of carcass and body fat compositions of grazing crossbred bulls using body measurements. J Anim Sci (Champaign) 2010;88:1442-53. https://doi.org/10.2527/jas.2009-1919
  29. Carvalho S, Zago LC, Pires CC, et al. Tissue compositionand allometric growth of tissues from commercial cuts and carcass of Texel lambs slaughtered with different weights. Semin Cienc Agrar 2016;37:2123-32. https://doi.org/10.5433/1679-0359.2016v37n4p2123