DOI QR코드

DOI QR Code

Predicting Learning Achievements with Indicators of Perceived Affordances Based on Different Levels of Content Complexity in Video-based Learning

  • Dasom KIM (Ewha Womans University Educational Technology) ;
  • Gyeoun JEONG (Ewha Womans University EduTech Convergence Lab)
  • Received : 2024.02.20
  • Accepted : 2024.04.18
  • Published : 2024.04.30

Abstract

The purpose of this study was to identify differences in learning patterns according to content complexity in video-based learning environments and to derive variables that have an important effect on learning achievement within particular learning contexts. To achieve our aims, we observed and collected data on learners' cognitive processes through perceived affordances, using behavioral logs and eye movements as specific indicators. These two types of reaction data were collected from 67 male and female university students who watched two learning videos classified according to their task complexity through the video learning player. The results showed that when the content complexity level was low, learners tended to navigate using other learners' digital logs, but when it was high, students tended to control the learning process and directly generate their own logs. In addition, using derived prediction models according to the degree of content complexity level, we identified the important variables influencing learning achievement in the low content complexity group as those related to video playback and annotation. In comparison, in the high content complexity group, the important variables were related to active navigation of the learning video. This study tried not only to apply the novel variables in the field of educational technology, but also attempt to provide qualitative observations on the learning process based on a quantitative approach.

Keywords

References

  1. Akiyama, Y. U. K. A. (2015). Task-based investigation of learner perceptions: Affordances of video-based eTandem learning. Researching language learner interaction online: From social media to MOOCs. CALICO Monograph Series, 13, 149-170.
  2. Ary, D., Jacobs, L., & Razavieh, A. (2002). Introduction to Research in Education. USA: Wadsworth-Thomas
  3. Ayres, P. (2006). Using subjective measures to detect variations of intrinsic cognitive load within problems. Learning and Instruction, 16(5), 389-400. https://doi.org/10.1016/j.learninstruc.2006.09.001.
  4. Bahari, A. (2021). Computer-mediated feedback for L2 learners: Challenges versus affordances. Journal of Computer Assisted Learning, 37(1), 24-38. https://doi.org/10.1111/jcal.12481
  5. Black, E. W., Dawson, K., & Priem, J. (2008). Data for free: Using LMS activity logs to measure community in online courses. The Internet and Higher Education, 11(2), 65-70. https://doi.org/10.1016/j.iheduc.2008.03.002.
  6. Bormann, J. (2014). Affordances of flipped learning and its effects on student engagement and achievement. (Master's dissertation). https://scholarworks.uni.edu/grp/137/.
  7. Boy, J., Eveillard, L., Detienne, F., & Fekete, J. D. (2015). Suggested interactivity: Seeking perceived affordances for information visualization. IEEE transactions on visualization and computer graphics, 22(1), 639-648.
  8. Carini, R. M., Kuh, G. D. & Klein, S. P. (2006). Student engagement and student learning: Testing the linkage. Research in Higher Education, 47(1), 1-32. https://doi.org/10.1007/s11162-005-8150-9.
  9. Chen, L. H., Lee, C. F. and Tsai, C. M. (2007). Perceiving affordances through perceptual information. Proceedings of International Association of Science of Design Research. Hong Kong.
  10. Chen, P. S. D., Gonyea, R., & Kuh, G. (2008). Learning at a distance: Engaged or not?. Innovate: Journal of Online Education, 4(3). https://www.learntechlib.org/p/104252/. 104252/
  11. Cho, Y. H., Huh, S. Y., Choi, H. S., Kim, J. Y., & Lee, H. K. (2015). Research Trend of Online Learning in Higher Education: An Ecological Approach. Journal of Educational Technology, 31(4), 725-755.
  12. Clark, R. E. (1983). Reconsidering research on learning from media. Review of educational research, 53(4), 445-459.
  13. Clark, R. E. (1994). Media will never influence learning. Educational technology research and development, 42(2), 21-29. https://doi.org/10.1007/BF02299088
  14. Cortes, L., Hernandez, J., Valencia, D., & Corvalan, P. (2014). Estimation of aboveground forest biomass using Landsat ETM+, Aster GDEM and Lidar. Forest Res, 3(117), 1-7.
  15. Dodson, S., Roll, I., Fong, M., Yoon, D., Harandi, N. M., & Fels, S. (2018). An active viewing framework for video-based learning. Proceedings of Fifth Annual ACM Conference on Learning at Scale. London. https://doi.org/10.1145/3231644.3231682.
  16. Fathi, A., Li, Y., & Rehg, J. M. (2012). Learning to recognize daily actions using gaze. Proceedings of European Conference on Computer Vision (pp. 314-327). Firenze. https://doi.org/10.1007/978-3-642-33718-5_23.
  17. Gibson, J. J. (1979). The ecological approach to visual perception. Hillsdale, NJ: Lawrence Erlbaum Associate.
  18. Gofton, K. (1999). Data firms react to survey fatigue. Marketing, 3, 29-30.
  19. Grgic, J. E., Still, M. L., & Still, J. D. (2016). Effects of Cognitive Load on Affordancebased Interactions. Applied Cognitive Psychology, 30(6), 1042-1051. https://doi.org/10.1002/acp.3298.
  20. Guseva, Y., & Kauppinen, T. (2018). Learning in the era of online videos: How to improve teachers' competencies of producing educational videos. In International Conference on Higher Education Advances (pp. 847-854). Editorial Universitat Politecnica de Valencia.
  21. Heft, H. (2003). Affordances, Dynamic Experience, and the Challenge of Reification. Ecological Psychology, 15(2), 149-180. https://doi.org/10.1207/S15326969ECO1502_4.
  22. He, W., Holton, A., Farkas, G., & Warschauer, M. (2016). The effects of flipped instruction on out-of-class study time, exam performance, and student perceptions. Learning and Instruction, 45, 61-71. https://doi.org/10.1016/j.learninstruc.2016.07.001.
  23. Holzinger, A., Kickmeier-Rust, M. D., & Albert, D. (2008). Dynamic media in computer science education; content complexity and learning performance: is less more?. Educational Technology & Society, 11(1), 279-290.
  24. Hwang, Y. J., & Ahn, M. L., (2014). A study of interface with affordance theory for museum education mobile application improvement. The Korean Association df Computer Education, 17(5), 25-34.
  25. Ivlev, O., Martens, C., & Graeser, A. (2005). Rehabilitation robots FRIEND-I and FRIEND-II with the dexterous lightweight manipulator. Technology and Disability, 17(2), 111-123. https://doi.org/10.3233/TAD-2005-17208.
  26. Jeong, G. (2023). Analyzing Learners' Visual Behavior Patterns Related to Information Processing and Cognitive States in Problem-Solving Learning. KEDI Journal of Educational Policy, 20(2).
  27. Jo, I. H., Park, Y., Kim, J., & Song, J. (2014). Analysis of online behavior and prediction of learning performance in blended learning environments. Educational Technology International, 15(2), 71-88.
  28. Jo, I. H., Kim, D., & Yoon, M. (2014). Analyzing the log patterns of adult learners in LMS using learning analytics. Proceedings of the Fourth International Conference on Learning Analytics And Knowledge (pp. 183-187). Indianapolis. https://doi.org/10.1145/2567574.2567616.
  29. Jo, I. H., & Kim, J. (2020). Verification of Cognitive Load Theory with Psychophysiological Measures in Complex Problem-Solving. The Asia-Pacific Education Researcher, 29(5), 417-429. https://doi.org/10.1007/s40299-019-00495-9
  30. Jonassen, D. H., Campbell, J. P., & Davidson, M. E. (1994). Learningwith media: Restructuring the debate. Educational technology research and development, 42(2), 31-39. https://doi.org/10.1007/BF02299089
  31. Kauertz, A., & Fischer, H. E. (2006). Assessing students' level of knowledge and analysing the reasons for learning difficulties in physics by Rasch analysis. In X. Liu & W. J. Boone (Eds.), Applications of Rasch measurement in science education (pp. 212-246). Maple Grove, USA: JAM Press
  32. Ke, F., Pachman, M., & Dai, Z. (2020). Investigating educational affordances of virtual reality for simulation-based teaching training with graduate teaching assistants. Journal of Computing in Higher Education, 1-21. https://doi.org/10.1007/s12528-020-09249-9
  33. Kim, J. (2017). Exploring the Feasibility of Learning Analytics using Psychophysiological Responses: Based on Cognitive Load Theory. (Doctorial dissertation). https://dspace.ewha.ac.kr/handle/2015.oak/242079.
  34. Kim, M., Seo, Y., Lee, J., & Um, J. (2015). A Study on the Construction of Affordance for Hologram e-Learning Contents. Korea Design Knowledge Society, 34, 255-264.
  35. Kirschner, P., Strijbos, J. W., Kreijns, K., & Beers, P. J. (2004). Designing electronic collaborative learning environments. Educational technology research and development, 52(3), 47-66. https://doi.org/10.1007/BF02504675.
  36. Kleftodimos, A., & Evangelidis, G. (2016). An interactive video-based learning environment supporting learning analytics: Insights obtained from analyzing learner activity data. In State-of-the-Art and Future Directions of Smart Learning (pp. 471-481). Springer, Singapore.
  37. Kowler, E. (2011). Eye movements: The past 25 years. Vision Research, 51(13), 1457-1483. https://doi.org/10.1016/j.visres.2010.12.014.
  38. Kozma, R. B. (1994). Will media influence learning? Reframing the debate. Educational technology research and development, 42(2), 7-19.
  39. Lai, M. L., Tsai, M. J., Yang, F. Y., Hsu, C. Y., Liu, T. C., Lee, S. W. Y., Lee, M. H., Chiou, G. L., Liang, J. C., & Tsai, C. C. (2013). A review of using eye-tracking technology in exploring learning from 2000 to 2012. Educational Research Review, 10, 90-115. https://doi.org/10.1016/j.edurev.2013.10.001.
  40. Lee, N. H., & Song, H. D. (2015). A Development of e-Portfolio design principles for facilitating metacognition activities from affordance perspectives. Journal of Korean Association for Educational Information and Media. 21(2), 165-184. https://doi.org/10.15833/KAFEIAM.21.2.165
  41. Liu, P., & Li, Z. (2012). Task complexity: A review and conceptualization framework. International Journal of Industrial Ergonomics, 42(6), 553-568. https://doi.org/10.1016/j.ergon.2012.09.001.
  42. Lowe, R., Schnotz, W., & Rasch, T. (2011). Aligning affordances of graphics with learning task requirements. Applied Cognitive Psychology, 25(3), 452-459. Retrieved from https://doi.org/10.1002/acp.1712.
  43. McCarley, J. S., & Kramer, A. F. (2006). Eye movements as a window on perception and cognition. In Parasuraman, R., & Rizzo, M. (Eds.), Neuroergonomics: The brain at work (pp. 95-112). New York, NY: Oxford University Press.
  44. McGrenere, J., & Ho, W. (2000). Affordances: Clarifying and evolving a concept. Proceedings of Graphics Interface 2000, 179-186. p. 3.
  45. Meghanathan, R. N., Nikolaev, A. R., & van Leeuwen, C. (2019). Refixation patterns reveal memory-encoding strategies in free viewing. Attention, Perception, & Psychophysics, 81, 2499-2516. https://doi.org/10.3758/s13414-019-01735-2
  46. Mesgari, M., Okoli, C., & Ortiz de Guinea, A. (2015). Affordance-based User Personas: A mixed-method Approach to Persona Development. Proceedings of Americas Conference on Information Systems. Puerto Rico.
  47. Mesgari, M., & Okoli, C. (2015). Ecological approach to user sensemaking of technology. Proceedings of International Conference on Information Systems. Fort Worth, Texas.
  48. Norman, D. A. (1988). The psychology of everyday things. New York, NY: Doubleday.
  49. Oproiu, G. C. (2015). A study about using e-learning platform (Moodle) in university teaching process. Procedia-Social and Behavioral Sciences, 180, 426-432. https://doi.org/10.1016/j.sbspro.2015.02.140
  50. Pang, H., Lim, A., Holford, M., Enerson, B. E., Lu, Bin., Lawton, P. M., Floyd, E., & Zhao, H. (2006). Pathway analysis using random forests classification and regression. Bioinformatics, 22(16), 2028-2036. https://doi.org/10.1093/bioinformatics/btl344.
  51. Park, H., & Song, H. D. (2015). Make E-Learning Effortless! Impact of a Redesigned User Interface on Usability through the Application of an Affordance Design Approach. Journal of Educational Technology & Society, 18(3), 185-196.
  52. Plass, J. L., Moreno, R., & Brunken, R. (2010). Cognitive load theory. New York, NY: Cambridge University Press.
  53. Poole, A., & Ball, L. J. (2006). Eye tracking in HCI and usability research. In Encyclopedia of human computer interaction (pp. 211-219). IGI global.
  54. Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 371-422. https://doi.org/10.1037/0033-2909.124.3.372
  55. Reif, D. M., Motsinger, A. A., McKinney, B. A., Crowe, J. E., & Moore, J. H. (2006). Feature selection using a random forests classifier for the integrated analysis of multiple data types. In IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (pp. 1-8). Toronto, Ontario. https://doi.org/10.1109/CIBCB.2006.330987.
  56. Robertson, J. (2011). The educational affordances of blogs for self-directed learning. Computers & Education, 57(2), 1628-1644. https://doi.org/10.1016/j.compedu.2011.03.003.
  57. Robinson, P. (2001). Task complexity, task difficulty, and task production: Exploring interactions in a componential framework. Applied linguistics, 22(1), 27-57. https://doi.org/10.1093/applin/22.1.27.
  58. Romero, C., Ventura, S., & Garcia, E. (2008). Data mining in course management systems: Moodle case study and tutorial. Computers & Education, 51(1), 368-384. https://doi.org/10.1016/j.compedu.2007.05.016.
  59. Sablic, M., Mirosavljevic, A., & Skugor, A. (2021). Video-based learning (VBL)-past, present and future: An overview of the research published from 2008 to 2019. Technology, Knowledge and Learning, 26(4), 1061-1077. https://doi.org/10.1007/s10758-020-09455-5
  60. Sinickas, A. (2007). Keeping score: Making performance data more compelling. Strategic Communication Management, 11(4), 32-35.
  61. Sperling, E. A., Frieder, C. A., & Levin, L. A. (2016). Biodiversity response to natural gradients of multiple stressors on continental margins. Proceedings of the Royal Society B: Biological Sciences, 283(1829). https://doi.org/10.1098/rspb.2016.0637.
  62. Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods, 14, 323-348. http://dx.doi.org/10.1037/a0016973.
  63. Sung, H., & Jo, I., H. (2018). Utilizing Multimodal data to Predict Learning Achievement: Behavioral Log, Psychophysiological Response, and Test Anxiety. Journal of Educational Technology, 34(2), 287-308. https://doi.org/10.17232/KSET.34.2.287
  64. Sweller, J., Ayres, P., & Kalyuga, S. (2011). Measuring cognitive load. In Cognitive load theory (pp. 71-85). Springer, New York, NY.
  65. Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review, 22(2), 123-138. https://doi.org/10.1007/s10648-010-9128-5.
  66. Talavera, L., & Gaudioso, E. (2004). Mining student data to characterize similar behavior groups in unstructured collaboration spaces. In Proceedings of the 16th European Conference on Artificial Intelligence (pp. 17-23). Valencia.
  67. Tobii Studio User's Manual Version 3.4.5. (01/2016). https://www.tobiipro.com/siteassets/tobii-pro/user-manuals/tobii-prostudio-user-manual.pdf.
  68. Tsai, M. J., Huang, L. J., Hou, H. T., Hsu, C. Y., & Chiou, G. L. (2016). Visual behavior, flow and achievement in game-based learning. Computers & Education, 98, 115-129. https://doi.org/10.1016/j.compedu.2016.03.011.
  69. van Merrienboer, J. J., Kirschner, P. A., & Kester, L. (2003). Taking the load off a learner's mind: Instructional design for complex learning. Educational Psychologist, 38(1), 5-13. https://doi.org/10.1207/S15326985EP38012.
  70. van Merrienboer, J. J., & Sweller, J. (2005). Cognitive load theory and complex learning: recent development and future directions. Education Psychology Review, 17(2), 147-177. https://doi.org/10.1007/s10648-005-3951-0.
  71. van Waes, L., Leijten, M., & Quinlan, T. (2010). Reading during sentence composing and error correction: A multilevel analysis of the influences of task complexity. Reading and Writing, 23(7), 803-834. https://doi.org/10.1007/s11145-009-9190-x.
  72. Wang, C., Fang, T., & Gu, Y. (2020). Learning performance and behavioral patterns of online collaborative learning: Impact of cognitive load and affordances of different multimedia. Computers & Education, 143, 103683. https://doi.org/10.1016/j.compedu.2019.103683
  73. Wu, W. L., Hsu, Y., Yang, Q. F., Chen, J. J., & Jong, M. S. Y. (2023). Effects of the self-regulated strategy within the context of spherical video-based virtual reality on students' learning performances in an art history class. Interactive Learning Environments, 31(4), 2244-2267. https://doi.org/10.1080/10494820.2021.1878231
  74. Yan, Z. (2020). Self-assessment in the process of self-regulated learning and its relationship with academic achievement. Assessment & Evaluation in Higher Education, 45(2), 224-238. https://doi.org/10.1080/02602938.2019.1629390
  75. Yoo, J. E. (2015). Random forests, an alternative data mining technique to decision tree. Journal of Educational Evaluation, 28(2), 427-448.
  76. Zhang, D., Zhou, L., Briggs, R. O., & Nunamaker Jr, J. F. (2006). Instructional video in e-learning: Assessing the impact of interactive video on learning effectiveness. Information & management, 43(1), 15-27. https://doi.org/10.1016/j.im.2005.01.004.