DOI QR코드

DOI QR Code

Formation and Deformation of the Fluid Mud Layer on Riverbeds under the Influence of the Hydrological Property and Organic Matter Composition

하천 수문 특성과 유기물 성상 변화에 따른 하상 유동상 퇴적물 거동 연구

  • Trung Tin Huynh (Department of Advanced Science and Technology Convergence, Kyungpook National University) ;
  • Jin Hur (Department of Engineering Environment, Energy and Geoinformatics, Sejong University) ;
  • Byung Joon Lee (Department of Advanced Science and Technology Convergence, Kyungpook National University)
  • 트렁 틴 휜 (경북대학교 미래과학기술융합학과) ;
  • 허진 (세종대학교 환경에너지공간융합학과) ;
  • 이병준 (경북대학교 미래과학기술융합학과)
  • Received : 2023.11.15
  • Accepted : 2024.02.27
  • Published : 2024.03.30

Abstract

This study employed field measurements and biogeochemical analysis to examine the effects of seasonal conditions (e.g., temperature and precipitation) and human intervention (e.g., dam or weir construction) on the chemical composition of dissolved organic matter, flocculation kinetics of suspended particulate matter, and formation of the fluid mud layer on riverbeds. The results indicated that a water environment with a substantial amount of biopolymers offered favorable conditions for flocculation kinetics during an algal bloom period in summer; a thick fluid mud layer was found to be predominated with cohesive materials during this period. However, after high rainfall, a substantial influx of terrigenous humic substances led to enhanced stabilization of the particulate matter, thereby decreasing flocculation and deposition, and the reduced biopolymer composition served to weaken the erosion resistance of the fluid mud on the riverbed. Moreover, a high-turbulence condition disaggregated the flocs and the fluid mud layer and resuspended the suspended particulate matter in the water column. This study demonstrates the mutual relationship that exists between biogeochemistry, flocculation kinetics, and the formation of the fluid mud layer on the riverine area during different seasons and under varying hydrological conditions. These findings are expected to eventually help inform the more optimal management of water resources, which is an urgent task in the face of anthropogenic stressors and climate change.

Keywords

Acknowledgement

We acknowledge the financial support by the National Research Foundation of Korea (Grant No. NRF-2020R1I1A3A04036895).

References

  1. Balan, M. S., Das, C. D. A., Khandelwal, M., and Chaudhari, P. (2013). Review of various technologies for depth measurement in estimating reservoir sedimentation, International Journal of Engineering Research & Technology, 2(10), 223-228. 
  2. Becker, M. (2011). Suspended sediment transport and fluid mud dynamics in tidal estuaries, PhD Dissertation, Universitat Bremen, Germany. 
  3. Becker, M., Schrottke, K., Bartholoma, A., Ernstsen, V., Winter, C., and Hebbeln, D. (2013). Formation and entrainment of fluid mud layers in troughs of subtidal dunes in an estuarine turbidity zone, Journal of Geophysical Research - Oceans, 118(4), 2175-2187. https://doi.org/10.1002/jgrc.20153 
  4. Becker, R. H., Sayers, M., Dehm, D., Shuchman, R., Quintero, K., Bosse, K., and Sawtell R. (2019). Unmanned aerial system based spectroradiometer for monitoring harmful algal blooms, A new paradigm in water quality monitoring, Journal of Great Lakes Research, 45(3), 444-453. https://doi.org/10.1016/j.jglr.2019.03.006 
  5. Cha, Y. J., Shim, M. P., and Kim, S. K. (2021). The four major rivers restoration project, Proceedings in UN-Water International Conference, Zaragoza, Spain, 3-5 Octber 2011. 
  6. Coufort, C., Bouyer, D., and Line, A. (2005). Flocculation related to local hydrodynamics in a Taylor-Couette reactor and in a jar, Chemical Engineering Science, 60(8-9), 2179-2192. https://doi.org/10.1016/j.ces.2004.10.038 
  7. Debnath, K., Nikora, V., Aberle, J., Westrich, B., and Muste, M. (2007). Erosion of cohesive sediments: Resuspension, bed load, and erosion patterns from field experiments, Journal of hydraulic engineering, 133(5), 508-520. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:5(508) 
  8. Deguchi, I. and Sawaragi, T. (1989). Effects of structure on deposition of discharged sediment around river mouth, Proceedings of Coastal Engineering, 1988, 1573-1587.  https://doi.org/10.1061/9780872626874.118
  9. Demir, H., Otay, E. N., Work, P. A., and Borekci, O. S. (2004). Impacts of dredging on shoreline change, Journal of Waterway, Port, Coastal, Ocean Engineering, 130(4), 170-178. https://doi.org/10.1061/(ASCE)0733-950X(2004)130:4(170) 
  10. Droppo, I., Leppard, G., Flannigan, D., and Liss, S. (1997). The freshwater floc: A functional relationship of water and organic and inorganic floc constituents affecting suspended sediment properties, Water, Air, and Soil Pollution, 99, 43-53. 
  11. Dyer, K. (1989). Sediment processes in estuaries: Future research requirements, Journal of Geophysical Research - Oceans, 94(C10), 14327-14339.  https://doi.org/10.1029/JC094iC10p14327
  12. Eisma, D. (1986). Flocculation and de-flocculation of suspended matter in estuaries, Netherlands Journal of Sea Research, 20(2-3), 183-199.  https://doi.org/10.1016/0077-7579(86)90041-4
  13. Feng, L., Hu, C., Chen, X., and Song, Q. (2014). Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS, Remote Sensing of Environment, 140, 779-788.  https://doi.org/10.1016/j.rse.2013.10.002
  14. Fettweis, M. and Baeye, M. (2015). Seasonal variation in concentration, size, and settling velocity of muddy marine flocs in the benthic boundary layer, Journal of Geophysical Research - Oceans, 120(8), 5648-5667.  https://doi.org/10.1002/2014JC010644
  15. Fettweis, M. and Lee, B. J. (2017). Spatial and seasonal variation of biomineral suspended particulate matter properties in high-turbid nearshore and low-turbid offshore zones, Water, 9(9), 694. https://doi.org/10.3390/w9090694 
  16. Foster, G., Healy, T., and De Lange, W. (1994). Sediment budget and equilibrium beach profiles applied to renourishment of an ebb tidal delta adjacent beach, Mt. Maunganui, New Zealand, Journal of Coastal Research, 10(3), 564-575. 
  17. Garcia-Oliva, M., Perez-Ruzafa, A., Umgiesser, G., McKiver, W., Ghezzo, M., De Pascalis, F., and Marcos., C. (2018). Assessing the hydrodynamic response of the Mar Menor lagoon to dredging inlets interventions through numerical modelling, Water, 10(7), 959. https://doi.org/10.3390/w10070959 
  18. Gardel, A., Anthony, E. J., Dos Santos, V. F., Huybrechts, N., Lesourd, S., Sottolichio, A., Maury, T., and Jolivet, M. (2021). Fluvial sand, Amazon mud, and sediment accommodation in the tropical Maroni River estuary: Controls on the transition from estuary to delta and chenier plain, Regional Studies in Marine Science, 41, 101548. https://doi.org/10.1016/j.rsma.2020.101548 
  19. Ho, Q. N., Fettweis, M., Hur, J., Desmit, X., Kim, J. I., Jung, D. W., Lee, S. D., Lee, S., Choi, Y. Y., and Lee, B. J. (2022). Flocculation kinetics and mechanisms of microalgaeand clay-containing suspensions in different microalgal growth phases, Water Research, 226, 119300. https://doi.org/10.1016/j.watres.2022.119300 
  20. Ho, Q. N., Fettweis, M., Spencer, K. L., and Lee, B. J. (2022). Flocculation with heterogeneous composition in water environments: A review, Water Research, 213, 118147. 
  21. Huber, S. A., Balz, A., Abert, M., and Pronk, W. (2011). Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND), Water Research, 45(2), 879-885. https://doi.org/10.1016/j.watres.2010.09.023 
  22. Huynh, T. T., Kim, J., Kim, W., Hur, J., Ho, N. Q., Bi, Q., Bui, T. V., Kim, J. J., Lee, S. D., Choi, Y. Y., and Lee, B. J. (2023). Dynamics of suspended particulate matter in an impounded river under dry and wet weather conditions, Water Resources Research, 59(7), e2022WR033629. https://doi.org/10.1029/2022WR033629 
  23. Ibraheem, A. M. (2020). Impact of bed material on the local scour downstream Fayoum type weir with various designs of floor jets, Asian Journal of Engineering Technology, 8(1), 23-35.  https://doi.org/10.24203/ajet.v8i1.6062
  24. Im, R. Y., Kim, J. Y., Nishihiro, J., and Joo, G. J. (20 20 ). Large weir construction causes the loss of seasonal habitat in riverine wetlands: A case study of the Four Large River Projects in South Korea, Ecological Engineering, 152, 105839. 
  25. Jolivet, M., Anthony, E. J., Gardel, A., Maury, T., and Morvan, S. (2022). Dynamics of mud banks and sandy urban beaches in French Guiana, South America, Regional Environmental Change, 22(3), 1-12. https://doi.org/10.1007/s10113-022-01944-w 
  26. Kirby, R. (1988). High Concentration Suspension (Fluid Mud) Layers in Estuaries, In: Dronkers, J., van Leussen, W. (eds) Physical Processes in Estuaries, Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-73691-9_23 
  27. Kirby, R., Parker, W., and Van Oostrum, W. (1980). Definition of the seabed in navigation routes through mud areas, The International Hydrographic Review, 57(1), 107-117. 
  28. Kirichek, A., Chassagne, C., Winterwerp, H., and Vellinga, T. (2018). How navigable are fluid mud layers, 34th PIANC World Congress, May 2018, 6-18. 
  29. Lamb, M. P., de Leeuw, J., Fischer, W. W., Moodie, A. J., Venditti, J. G., Nittrouer, J. A., Haught, D., and Parker, G. (2020). Mud in rivers transported as flocculated and suspended bed material, Nature Geoscience, 13(8), 566-570.  https://doi.org/10.1038/s41561-020-0602-5
  30. Le Nguyen, H. T. and Luong, H. P. V. (2019). Erosion and deposition processes from field experiments of hydrodynamics in the coastal mangrove area of Can Gio, Vietnam, Oceanologia, 61(2), 252-264. https://doi.org/10.1016/j.oceano.2018.11.004 
  31. Lee, B., Kim, J., Hur, J., Choi, I. H., Toorman, E. A., Fettweis, M., and Choi, J. W. (2019). Seasonal dynamics of organic matter composition and its effects on suspended sediment flocculation in river water, Water Resources Research, 55(8), 6968-6985. https://doi.org/10.1029/2018WR024486 
  32. Mehta, A. J., Samsami, F., Khare, Y. P., and Sahin, C. (2014). Fluid mud properties in nautical depth estimation, Journal Port, Coastal and Ocean Engineering of Waterway, 140(2), 210-222.  https://doi.org/10.1061/(ASCE)WW.1943-5460.0000228
  33. Mietta, F., Chassagne, C., and Winterwerp, J. (2009). Shear-induced flocculation of a suspension of kaolinite as function of pH and salt concentration, Journal of Colloid and Interface Science, 336(1), 134-141. https://doi.org/10.1016/j.jcis.2009.03.044 
  34. Nelson, J. M., Shreve, R. L., McLean, S. R., and Drake, T. G. (1995). Role of near-bed turbulence structure in bed load transport and bed form mechanics, Water Resources Research, 31(8), 2071-2086. https://doi.org/10.1029/95WR00976 
  35. Partheniades, E. (2009). Cohesive sediments in open channels: Erosion, transport and deposition, Butterworth-Heinemann, USA 
  36. Ren, P., Nan, J., Zhang, X., and Zheng, K. (2017). Analysis of floc morphology in a continuous-flow flocculation and sedimentation reactor, Journal of Environmental Sciences, 52, 268-275. http://dx.doi.org/10.1016/j.jes.2016.04.007 
  37. Saad, H. A. and Habib, E. H. (2021). Assessment of riverine dredging impact on flooding in low-gradient coastal rivers using a hybrid 1D/2D hydrodynamic model, Frontiers in Water, 3, 628829. https://doi.org/10.3389/frwa.2021.628829 
  38. Saravanan, V., McDonald, G. T., and Mollinga, P. P. (2009). Critical review of integrated water resources management: moving beyond polarised discourse, Natural Resources Forum, 33(1), 76-86. https://doi.org/10.1111/j.1477-8947.2009.01210.x 
  39. Shen, X., Toorman, E. A., Lee, B. J., and Fettweis, M. (2019). An approach to modeling biofilm growth during the flocculation of suspended cohesive sediments, Journal of Geophysical Research - Oceans, 124(6), 4098-4116. https://doi.org/10.1029/2018JC014493 
  40. Sholkovitz, E. (1976). Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater, Geochimica et Cosmochimica Acta, 40(7), 831-845.  https://doi.org/10.1016/0016-7037(76)90035-1
  41. Son, M. and Hsu, T. J. (2011). The effects of flocculation and bed erodibility on modeling cohesive sediment resuspension, Journal of Geophysical Research - Oceans, 116(C3). 
  42. Wang, H., Wang, A., Bi, N., Zeng, X., and Xiao, H. (2014). Seasonal distribution of suspended sediment in the Bohai Sea, China, Continental Shelf Research, 90, 17-32.  https://doi.org/10.1016/j.csr.2014.03.006
  43. Wang, Y. and Gao, L. (2022). Sources and dynamics of suspended particulate matter in a large-river dominated marine system: Contributions from terrestrial sediments, biological particles, and flocculation, Journal of Marine Systems, 225, 103648. 
  44. Waqas, A., Neumeier, U., and Rochon, A. (2020). Seasonal changes in sediment erodibility associated with biostabilization in a subarctic intertidal environment, St. Lawrence Estuary, Canada, Estuarine, Coastal and Shelf Science, 245, 106935. 
  45. Wilhelm, S., Bullerjahn, G., and McKay, R. (2020). The complicated and confusing ecology of Microcystis blooms, Ecological and Evolutionary Science, 11(3), e00529-20. https://doi.org/10.1128/mBio.00529-20 
  46. Winterwerp, J. C. and Van Kesteren, W. G. (2004). Introduction to the physics of cohesive sediment dynamics in the marine environment, Elsevier, the Netherlands. 
  47. Yevjevich, V. (1991). Tendencies in hydrology research and its applications for 21st century, Water Resources Management, 5(1), 1-23. https://doi.org/10.1007/BF00422036 
  48. Yu, L., Xu, C., and Chen, Y. (2019). Flocculation effects on the sedimentation behavior of high-concentrated mud suspensions. Abstract inn The 29th International Ocean and Polar Engineering Conference, Hawaii, United States, June 2019.