DOI QR코드

DOI QR Code

Evaluation of the Feasibility of the Sample Pretreatment and Nile Red Fluorescence Staining Methods for Quantification of Microplastics in Wastewater Samples

하수처리장 유입⋅유출⋅공정수 내 미세플라스틱 분석을 위한 시료 전처리 기법과 Nile Red 형광염색법 적용성 평가

  • Jae In Kim (Energy and Environment Institute, Kyungpook National University) ;
  • Nguyen Thu Huong (Department of Advanced Science and Technology Convergence, Kyungpook National University) ;
  • Byung Joon Lee (Energy and Environment Institute, Kyungpook National University)
  • 김재인 (경북대학교 에너지환경연구소) ;
  • ;
  • 이병준 (경북대학교 에너지환경연구소)
  • Received : 2023.11.12
  • Accepted : 2023.12.27
  • Published : 2024.01.30

Abstract

Microplastics in water resources have been recognized as a serious problem. The discharge of microplastics from wastewater treatment plants is considered a major contributor to environmental pollution in water resources. However, a reliable analytical method for quantifying microplastics in wastewater treatment plants has not yet been established. This study proposes a reliable, quick, and easy analytical method for quantifying microplastics. For the removal of organic particles, preprocessing steps were applied including oxidation, sonication, washing, and sieving. Nile Red staining was used to visualize microplastics, and quantitative analysis was conducted using fluorescent imaging. The stained microplastics were ultimately quantified through image analysis software. Among the preprocessing steps, sonication and washing stages were particularly effective in efficiently removing interfering substances from wastewater, enhancing the accuracy of the microplastic analysis. Additionally, various solvents (methanol, acetone, and N-hexane) for the Nile Red staining solution were tested. When N-hexane was applied as the solvent, the quantity of stained microplastics was lower compared to methanol and acetone. This suggests that N-hexane has a greater potential of reducing false staining and counting of non-plastic particles. In summary, this research demonstrates a robust method for quantifying microplastics in wastewater treatment plants by employing effective preprocessing steps and optimizing the staining process with Nile Red and N-hexane.

Keywords

Acknowledgement

이 논문은 2021년도 한국연구재단 이공분야 기초연구사업(NRF-2020R1I1A3A04036895)과 대구환경공단(산⋅산⋅학 공동연구), 대구테크노파크(2021 물산업구매연계 기술개발사업)의 지원을 받아 수행됨.

References

  1. Andrady, A. L. (2011). Microplastics in the marine environment, Marine Pollution Bulletin, 62(8), 1596-1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
  2. Barnes, D. K., Galgani, F., Thompson, R. C., and Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments, Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 364(1526), 1985-1998.
  3. Bergmann, M., Wirzberger, V., Krumpen, T., Lorenz, C., Primpke, S., Tekman, M. B., and Gerdts, G. (2017). High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory, Environmental Science & Technology, 51(19), 11000-11010. https://doi.org/10.1021/acs.est.7b03331
  4. Cole, M., Lindeque, P., Halsband, C., and Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review, Marine Pollution Bulletin, 62(12), 2588-2597. https://doi.org/10.1016/j.marpolbul.2011.09.025
  5. Collins, T. J. (2007). ImageJ for microscopy, Biotechniques, 43(S1), S25-S30. https://doi.org/10.2144/000112517
  6. Conley, K., Clum, A., Deepe, J., Lane, H., and Beckingham, B. (2019). Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year, Water Research X, 3, 100030.
  7. Dutta, A. K., Kamada, K., and Ohta, K. (1996) Spectroscopic studies of Nile Red in organic solvents and polymers, Journal of Photochemistry and Photobiology A: Chemistry, 93(1), 57-64. https://doi.org/10.1016/1010-6030(95)04140-0
  8. Ehlers, S. M., Maxein, J., and Koop, J. H. (2020). Low-cost microplastic visualization in feeding experiments using an ultraviolet light emitting flashlight, Ecological Research, 35(1), 265-273. https://doi.org/10.1111/1440-1703.12080
  9. Gies, E. A., LeNoble, J. L., Noel, M., Etemadifar, A., Bishay, F., Hall, E. R., and Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada, Marine Pollution Bulletin, 133, 553-561. https://doi.org/10.1016/j.marpolbul.2018.06.006
  10. Hengstmann, E. and Fischer, E. K. (2019). Nile Red staining in microplastic analysis-proposal for a reliable and fast identification approach for large microplastics, Environmental Monitoring and Assessment, 191, 612.
  11. Igathinathane, C., Pordesimo, L. O., Columbus, E. P., Batchelor, W. D., and Methuku, S. R. (2008). Shape identification and particles size distribution from basic shape parameters using ImageJ, Computers and Electronics in Agriculture, 63(2), 168-182. https://doi.org/10.1016/j.compag.2008.02.007
  12. Lares, M., Ncibi, M. C., Sillanpaa, M., and Sillanpaa, M. (2018). Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology, Water Research, 133(15), 236-246. https://doi.org/10.1016/j.watres.2018.01.049
  13. Law, K. L. (2017). Plastics in the marine environment, Annual Review of Marine Science, 9, 205-229. https://doi.org/10.1146/annurev-marine-010816-060409
  14. Loder, M. G. J., Imhof, H. K., Ladehoff, M., Loschel, L. A., Lorenz, C., Mintenig, S., Piehl, S., Primpke, S., Schrank, I., Laforsch, C., and Gerdts, G. (2017). Enzymatic purification of microplastics in environmental samples, Environmental Science & Technology, 51(24), 14283-14292.
  15. Lusher, A. L., Tirelli, V., O'Connor, I., and Officer, R. (2015). Microplastics in Arctic polar waters: the first reported values of particles in surface and sub-surface samples, Scientific Reports, 5(1), 14947.
  16. Maes, T., Jessop, R., Wellner, N., Haupt, K., and Mayes, A. G. (2017). A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red Scientific Reports, 7(1), 44501.
  17. Mintenig, S. M., Int-Veen, I., Loder, M. G. J., Primpke, S., and Gerdts, G. (2017). Identification of microplastic in effluents of waste water treatment plants using focal plane arraybased micro-Fourier-transform infrared imaging, Water Research, 108, 365-372.
  18. Obbard, R. W. (2018). Microplastics in polar regions: The role of long range transport, Current Opinion in Environmental Science & Health, 1, 24-29. https://doi.org/10.1016/j.coesh.2017.10.004
  19. Prata, J. C., Alves, J. R., da Costa, J. P., Duarte, A. C., and Rocha-Santos, T. (2020). Major factors influencing the quantification of Nile Red stained microplastics and improved automatic quantification (MP-VAT 2.0), Science of The Total Environment, 719, 137498.
  20. Rasband, W. S. (1997). ImageJ: Image processing and analysis in Java, Astrophysics Source Code Library, 1, 06013.
  21. Ray, A., Das, S., and Chattopadhyay, N. (2019). Aggregation of Nile Red in water: Prevention through encapsulation in β-Cyclodextrin, ACS Omega, 4(1), 15-24. https://doi.org/10.1021/acsomega.8b02503
  22. Shim, W. J., Song, Y. K., Hong, S. H., and Jang, M. (2016). Identification and quantification of microplastics using Nile Red staining, Marine Pollution Bulletin, 113(1-2), 469-476. https://doi.org/10.1016/j.marpolbul.2016.10.049
  23. Simon, M., van Alst, N., and Vollertsen, J. (2018). Quantification of microplastic mass and removal rates at wastewater treatment plants applying Focal Plane Array (FPA)-based Fourier Transform Infrared (FT-IR) imaging, Water Research, 142, 1-9. https://doi.org/10.1016/j.watres.2018.05.019
  24. Stock, F., Kochleus, C., Bansch-Baltruschat, B., Brennholt, N., and Reifferscheid, G. (2019). Sampling techniques and preparation methods for microplastic analyses in the aquatic environment-A review, TrAC Trends in Analytical Chemistry, 113, 84-92. https://doi.org/10.1016/j.trac.2019.01.014
  25. Sun, J., Dai, X., Wang, Q., van Loosdrecht, M. C., and Ni, B. J. (2019). Microplastics in wastewater treatment plants: Detection, occurrence and removal, Water Research, 1 52 , 21-37.
  26. Talvitie, J., Mikola, A., Koistinen, A., and Setala, O. (2017). Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies, Water Research, 123, 401-407. https://doi.org/10.1016/j.watres.2017.07.005
  27. Thompson, R. C., Swan, S. H., Moore, C. J., and Vom Saal, F. S. (2009). Our plastic age, Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1973-1976. https://doi.org/10.1098/rstb.2009.0054
  28. Waller, C. L., Griffiths, H. J., Waluda, C. M., Thorpe, S. E., Loaiza Alamo, I., Moreno, B., Pacherres, C. O., and Hughes, K. A. (2017). Microplastics in the Antarctic marine system: An emerging area of research, Science of The Total Environment, 598, 220-227.