DOI QR코드

DOI QR Code

Seismic performance evaluation of a steel slit damper for retrofit of structures on soft soil

  • Received : 2022.05.20
  • Accepted : 2024.04.03
  • Published : 2024.04.10

Abstract

This paper presents an experimental and analytical study on a steel slit damper designed as an energy dissipative device for earthquake protection of structures considering soil-structure interaction. The steel slit damper is made of a steel plate with a number of slits cut out of it. The slit damper has an advantage as a seismic energy dissipation device in that the stiffness and the yield force of the damper can be easily controlled by changing the number and size of the vertical strips. Cyclic loading tests of the slit damper are carried out to verify its energy dissipation capability, and an analytical model is developed validated based on the test results. The seismic performance of a case study building is then assessed using nonlinear dynamic analysis with and without soil-structure interaction. The soil-structure system turns out to show larger seismic responses and thus seismic retrofit is required to satisfy a predefined performance limit state. The developed slit dampers are employed as a seismic energy dissipation device for retrofitting the case study structure taking into account the soil-structure interaction. The seismic performance evaluation of the model structure shows that the device works stably and dissipates significant amount of seismic energy during earthquake excitations, and is effective in lowering the seismic response of structures standing on soft soil.

Keywords

Acknowledgement

This research was financially supported by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the Korea-China International Cooperative R&D program. (Project No. P0014937)

References

  1. AISC (2010a), Seismic Provisions for Structural Steel Buildings (ANSI/AISC 341-10), Chicago, IL. 
  2. AISC (2010b), Specification for Structural Steel Buildings (ANSI/AISC 360-10), Chicago, IL. 
  3. Alavi, S.A., Mohammadimehr, M. and Ejtahed, S.H. (2021), "Vibration analysis and control of micro porous beam integrated with FG-CNT distributed piezoelectric sensor and actuator", Steel Compos. Struct., 41(4), 595-608. https://doi.org/10.12989/scs.2021.41.4.595. 
  4. Amini, F., Bitaraf, M., Nasab, M.S.E. and Javidan, M.M. (2018), "Impacts of soil-structure interaction on the structural control of nonlinear systems using adaptive control approach", Eng. Struct., 157, 1-13. https://doi.org/10.1016/J.ENGSTRUCT.2017.11.071. 
  5. Anoushehei, M., Daneshjoo, F., Mahboubi, S. and Khazaeli, S. (2017), "Experimental investigation on hysteretic behavior of rotational friction dampers with new friction materials", Steel Compos. Struct., 24(2), 239-248. https://doi.org/10.12989/scs.2017.24.2.239. 
  6. Bae, J., Lee, C.H., Park, M., Alemayehu, R.W., Ryu, J., Kim, Y. and Ju, Y.K. (2020), "Cyclic loading performance of radius-cut double coke-shaped strip dampers", Materials, 13(18), 3920. http://dx.doi.org/10.3390/ma13183920. 
  7. Beiraghi, H. and Homa F. (2021), "Performance based assessment of shape memory alloy braces combined with buckling restrained braces in frames subjected to near field earthquakes", Steel Compos. Struct. 41(3), 353-367. https://doi.org/10.12989/scs.2021.41.3.353. 
  8. Bitaraf, M., Ozbulut, O.E., Hurlebaus, S. and Barroso, L. (2010), "Application of semi-active control strategies for seismic protection of buildings with MR dampers", Eng. Struct., 32(10), 3040-3047. https://doi.org/10.1016/j.engstruct.2010.05.023. 
  9. Boardman, P.R., Wood, B.J. and Carr, A.J. (1983), "Union house: A cross braced structure with energy dissipators", Bull. New Zealand Soc. Earthq. Eng., 16(2), 83-97.  https://doi.org/10.5459/bnzsee.16.2.83-97
  10. De la Llera, J.C., Esguerra, C. and Almazan, J.L. (2004), "Earthquake behavior of structures with copper energy dissipators", Earthq. Eng. Struct. Dyn., 33(3), 329-358. https://doi.org/10.1002/eqe.354. 
  11. Dolce, M., Donatello, C. and Roberto, M. (2000), "Implementation and testing of passive control devices based on shape memory alloys", Earthq. Eng. Struct. Dyn., 29(7), 945-68. https://doi.org/10.1002/1096-9845(200007)29:7<945::AIDEQE958>3.0.CO;2-%23. 
  12. Eldin, M.N., Kim, J. and Kim, J. (2018), "Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos. Struct., 27(5), 633-646. https://doi.org/10.12989/scs.2018.27.5.633. 
  13. Esfandiyari, R., Nejad, S.M., Marnani, J.A., Mousavi, S.A. and Zahrai, S.M. (2020), "Seismic behavior of structural and nonstructural elements in RC building with bypass viscous dampers", Steel Compos. Struct., 34(4), 487-497. https://doi.org/10.12989/scs.2020.34.4.487. 
  14. Filippou, F.C., Popov, E.P. and Bertero, V.V. (1983), Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints. 
  15. Foti, D., Diaferio, M. and Nobile, R. (2010), "Optimal design of a new seismic passive protection device made in aluminium and steel", Struct. Eng. Mech., 35(1), 119-122. https://doi.org/10.12989/10.12989/sem.2010.35.1.119. 
  16. Gorji Azandariani, M., Gorji Azandariani, A. and Abdolmaleki, H. (2020), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. https://doi.org/10.1016/j.jcsr.2020.106145. 
  17. He, J., Vasdravellis, G. and Wang, S. (2021), "Circular perforated steel yielding demountable shear connector for sustainable precast composite floors", Steel Compos. Struct., 39(6), 701-721. https://doi.org/10.12989/scs.2021.39.6.701. 
  18. Javidan, M.M. and Jinkoo, K. (2020), "Steel hysteretic column dampers for seismic retrofit of soft-first-story structures", Steel Compos. Struct., 37(3), 259-272. https://doi.org/10.12989/scs.2020.37.3.259. 
  19. Kafi, M.A. and Nik-Hoosh, K. (2019), "The geometric shape effect of steel slit dampers in their behavior", Mag. Civil Eng., 87(3). 3017. https://doi.org/10.18720/MCE.87.1. 
  20. Kang, H., Adane, M., Chun, S. and Kim, J. (2022), "Development of a seismic retrofit system made of steel frame with vertical slits", Steel Compos. Struct., 44(2), 269-280. 
  21. Lee, J. and Jinkoo, K. (2015), "Seismic performance evaluation of moment frames with slit-friction hybrid dampers", Earthq. Struct., 9(6), 1291-1311. https://doi.org/10.12989/eas.2015.9.6.1291. 
  22. Lignos, D.G. and Krawinkler, H. (2011), "Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading", J. Struct. Eng., 137(11), 1291-1302. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376. 
  23. Lor, H.A., Izadinia, M. and Memarzadeh, P. (2019), "Experimental evaluation of steel connections with horizontal slit dampers", Steel Compos. Struct., 32(1), 79. 
  24. Martinez-Romero, E. (1993), "Experiences on the use of supplementary energy dissipators on building structures", Earthq. Spectra, 9(3), 581-625. https://doi.org/10.1193/1.1585731. 
  25. McKenna, F., Fenves, G.L. and Scott, S.H. (2000), Open System for Earthquake Engineering Simulation, University of California, Berkeley, CA. 
  26. Menegotto, M. (1973), "Method of analysis for cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending", Proc. of IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, 15-22. 
  27. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2020), "Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading", Steel Compos. Struct., 36(2), 163-177. https://doi.org/10.12989/scs.2020.36.2.163. 
  28. Naeem, A. and Jinkoo, K. (2018), "Seismic retrofit of a framed structure using damped cable systems", Steel Compos. Struct., 29(3), 287-299. https://doi.org/10.12989/SCS.2018.29.3.287. 
  29. Naeem, A., Mohamed Nour, E., Jinkoo, K. and Joowoo, K. (2017), "'Seismic performance evaluation of a structure retrofitted using steel slit dampers with shape memory alloy bars", Int. J. Steel Struct., 17(4), 1627-1638. https://doi.org/10.1007/s13296-017-1227-4. 
  30. Nasab, M.S.E. and Jinkoo, K. (2022), "Fuzzy analysis of a viscoelastic damper in seismic retrofit of structures", Eng. Struct., 250, 113473. https://doi.org/10.1016/j.engstruct.2021.113473. 
  31. Nasab, M.S.E. and Kim, J. (2020), "Seismic retrofit of structures using hybrid steel slit-viscoelastic dampers", J. Struct. Eng., 146(11), 04020238. 
  32. Nasab, M.S.E., Chun, S. and Kim, J. (2022b), "Seismic retrofit system made of viscoelastic polymer composite material and thin steel plates", Steel Compos. Struct., 43(2), 153-164. 
  33. Nasab, M.S.E., Guo, Y.Q. and Kim, J. (2022a), "Seismic retrofit of a soft first-story building using viscoelastic dampers considering inherent uncertainties", J. Build. Eng., 47, 103866. 
  34. Noureldin, M., Ahmed, S. and Kim, J. (2021), "Self-centering steel slotted friction device for seismic retrofit of beam-column joints", Steel Compos. Struct., 41(1), 13-30. https://doi.org/https://doi.org/10.12989/scs.2021.41.1.013. 
  35. NourEldin, M., Naeem, A. and Kim, J. (2019), "Life-cycle cost evaluation of steel structures retrofitted with steel slit damper and shape memory alloy-based hybrid damper", Adv. Struct. Eng., 22(1), 3-16.  https://doi.org/10.1177/1369433218773487
  36. Oncu-Davas, S. and Alhan, C. (2019), "Probabilistic behavior of semi-active isolated buildings under pulse-like earthquakes", Smart Struct. Syst., 23(3), 227-242. https://doi.org/10.12989/sss.2019.23.3.227. 
  37. Park, J., Lee, J. and Kim, J. (2012), "Cyclic test of buckling restrained braces composed of square steel rods and steel tube", Steel Compos. Struct., 13(5), 423-436. https://doi.org/10.12989/scs.2012.13.5.423. 
  38. PEER (2014), PEER NGA Database, PEER Ground Motion Database. 
  39. Pekelnicky, R., Engineers, S.D., Chris Poland, S.E. and Engineers, N.D. (2012), "ASCE 41-13: Seismic evaluation and retrofit rehabilitation of existing buildings", Proceedings of the SEAOC. 
  40. Perry, C.L., Fierro, E.A., Sedarat, H. and Scholl, R.E. (1993), "Seismic upgrade in San Francisco using energy dissipation devices", Earthq. Spectra, 9(3), 559-579. https://doi.org/https://doi.org/10.1193/1.1585730. 
  41. Raychowdhury, P. (2008), Nonlinear Winkler-based Shallow Foundation Model for Performance Assessment of Seismically Loaded Structures. eScholarship, University of California, USA 
  42. Rodgers, G.W., Chase, J.G., Mander, J.B., Leach, N.C., Denmead, C.S., Cleeve, L. and Heaton, D. (2020), "High force-to-volume extrusion dampers and shock absorbers for civil infrastructure", In Progress in Mechanics of Structures and Materials, 415-420. CRC Press. 
  43. Shahri, S.F. and Mousavi, S.R. (2018), "Seismic behavior of beam-to-column connections with elliptic slit dampers", Steel Compos. Struct., 26(3), 289-301. https://doi.org/https://doi.org/10.12989/scs.2018.26.3.289. 
  44. Tena-Colunga, A. (1997), "Mathematical modelling of the ADAS energy dissipation device", Eng. Struct., 19(10), 811-821. https://doi.org/https://doi.org/10.1016/S0141-0296(97)00165-X. 
  45. Williams, M.S. and Albermani, F. (2003), Monotonic and Cyclic Tests on Shear Diaphragm Dissipators for Steel Frames.
  46. Xia, C. and Hanson, R.D. (1992), "Influence of ADAS element parameters on building seismic response", J. Struct. Eng., 118(7), 1903-1918. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:7(1903). 
  47. Xiang, Y. and Hua-Rong, X. (2021), "Probabilistic effectiveness of visco-elastic dampers considering earthquake excitation uncertainty and ambient temperature fluctuation", Eng. Struct., 226, 111379. https://doi.org/10.1016/j.engstruct.2020.111379. 
  48. Xu, Z.-D., Ge, T. and Liu, J. (2020), "Experimental and theoretical study of high-energy dissipation viscoelastic dampers based on acrylate-rubber matrix", J. Eng. Mech., 146(6), 4020057s. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001802. 
  49. Yousef-beik, S.M.M., Veismoradi, S., Zarnani, P. and Quenneville, P. (2020), "A new self-centering brace with zero secondary stiffness using elastic buckling", J. Construct. Steel Res., 169, 106035. https://doi.org/10.1016/j.jcsr.2020.106035.