DOI QR코드

DOI QR Code

Effects of the stiffness of an inclusion on the mechanical behavior of an aluminum alloy plate with a lateral notch

  • Moulgada Abdelmadjid (Department of Mechanical Engineering, University of Ibn Khaldoun Tiaret) ;
  • Zagane Mohammed El Sallah (Department of Mechanical Engineering, University of Ibn Khaldoun Tiaret) ;
  • Murat Yaylaci (Department of Civil Engineering, Recep Tayyip Erdogan University) ;
  • Ait Kaci Djafar (LMPM Department of Mechanical Engineering, University of Djillali Liabes Sidi Bel Abbes) ;
  • Benouis Ali (LMPM Department of Mechanical Engineering, University of Djillali Liabes Sidi Bel Abbes) ;
  • Baltach Abdelghani (Department of Mechanical Engineering, University of Ibn Khaldoun Tiaret) ;
  • Sevval Ozturk (Department of Civil Engineering, Recep Tayyip Erdogan University) ;
  • Mehmet Emin Ozdemir (Department of Civil Engineering, Cankiri Karatekin University) ;
  • Ecren Uzun Yaylaci (Faculty of Engineering and Architecture, Recep Tayyip Erdogan University)
  • Received : 2023.06.20
  • Accepted : 2024.03.27
  • Published : 2024.04.10

Abstract

This study delves into the interaction dynamics between lateral notches and inclusions, providing valuable insights for more effective engineering of structural components. By employing the finite element method, the research analyzes how inclusions affect the dimensions and contours of the plastic zone under confined plasticity conditions. Several parameters were investigated, including loading influence, the distance between the inclusion and notch tip, inclusion stiffness, and the distribution of Von Mises stress, as well as normal stresses σxx and σyy, and Comparison between different stresses. Examining stress distributions under varying loading conditions reveals a significant intensification, particularly near the crack tip. Moreover, the presence of an inclusion near the notch base reduces both the size and shape of the plastic zone. The distribution of the stresses for different loads knows an increase in intensity, especially near the crack head, which is the most requested by the tensile forces on its upper part, which can cause either the crack's initiation or opening, inducing significant stresses.

Keywords

References

  1. ABAQUS v.14-1 (2014), Dassault Systemes Simulia Corp Providence, Rhode Island, USA.
  2. Abyazi, A. and Ebrahimi, A.R. (2021), "Effect of spherical inclusions on fatigue anisotropy of HSLA-100", Mater. Sci. Technol., 37(3), 314-325. https://doi.org/10.1080/02670836.2021.1890908.
  3. Al-Furjan, M.S.H., Fan, S., Shan, L., Farrokhian, A., Shen, X. and Kolahchi, R. (2023), "Wave propagation analysis of micro air vehicle wings with honeycomb core covered by porous FGM and nanocomposite magnetostrictive layers", Waves Random Complex Media. https://doi.org/10.1080/17455030.2022.2164378.
  4. Al-Furjan, M.S.H., Farrokhian, A., Keshtegar, B., Kolahchi, R. and Trung, N-T. (2021), "Dynamic stability control of viscoelastic nanocomposite piezoelectric sandwich beams resting on Kerr foundation based on exponential piezoelasticity theory", Eur. J. Mech. A Solids, 86, 104169. https://doi.org/10.1016/j.euromechsol.2020.104169.
  5. Ayatollahi, M.R., Razavi, S.M.J., Sommitsch, C. and Moser, C. (2016), "Fatigue Life Extension by Crack Repair Using Double Stop-Hole Technique", Mater. Sci. Forum., 879, 3-8. https://doi.org/10.4028/www.scientific.net/msf.879.3.
  6. Bouzitouna, W.N., Oudad, W., Belhamiani, M., Belhadri, D.E. and Zouambi, L. (2020), "Elastoplastic analysis of cracked Aluminum plates with a hybrid repair technique using the bonded composite patch and drilling hole in opening mode I", Frat. Ed Integrita Strutt., 14(52), 256-268. https://doi.org/10.3221/IGF-ESIS.52.20.
  7. Chu, C., Shan, L., Al-Furjan, M.S.H., Farrokhian, A. and Kolahchi, R. (2023), "Energy absorption, free and forced vibrations of flexoelectric nanocomposite magnetostrictive sandwich nanoplates with single sinusoidal edge on the frictional torsional viscoelastic medium", Archiv. Civ. Mech. Eng., 23, 223. https://doi.org/10.1007/s43452-023-00756-x.
  8. D'Angela, D. and Ercolino, M. (2021), "Fatigue crack growth in metallic components: Numerical modelling and analytical solution", Struct. Eng. Mech., 79(5), 541-556. https://doi.org/10.12989/sem.2021.79.5.541.
  9. DarAssi, M. and Hadji, L. (2014), "Analysis of the Interplay Between Sedimentation and Thermophoresis in the Presence of Convection in Colloidal Suspensions", ASME, V01DT32A001. https://doi.org/10.1115/FEDSM2014-21078.
  10. DarAssi, M.H. and Safi, M.A. (2021), "Analysis of an SIRS Epidemic Model for a Disease Geographic Spread", Nonlinear Dyn. Syst. Theory, 21(1), 56-67.
  11. Dewapriya, M.A.N., Meguid, S.A. and Rajapakse, R.K.N.D. (2018), "Atomistic modelling of crack-inclusion interaction in graphene", Eng. Fract. Mech., 195, 92-103. https://doi.org/10.1016/j.engfracmech.2018.04.003.
  12. Ebrahimi, M.T., Dini, D., Balint, D.S., Sutton, A.P. and Ozbayraktar, S. (2018), "Discrete crack dynamics: A planar model of crack propagation and crack-inclusion interactions in brittle materials", Int. J. Solids Struct., 152, 12-27. https://doi.org/10.1016/j.ijsolstr.2018.02.036.
  13. Feng, L., Liu, T., Qian, X. and Chen, C. (2022), "A complete integrity assessment of welded connections under high and low cycle fatigue followed by fracture failure", Steel. Compos. Struct., 43(4), 465-481. https://doi.org/10.12989/scs.2022.43.4.465.
  14. Hadji, L. and DarAssi, M. (2014), "Influence of sedimentation on the threshold for Soret-driven convection in colloidal suspensions", Phys. Rev. E, 89(1), 013014. https://doi.org/10.1103/PhysRevE.89.013014.
  15. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002.
  16. Hajmohammad, M.H., Nouri, A.H., Zarei, M.S. and Kolahchi, R. (2019), "A new numerical approach and visco-refined zigzag theory for blast analysis of auxetic honeycomb plates integrated by multiphase nanocomposite facesheets in hygrothermal environment", Eng. Comput., 35, 1141-1157. https://doi.org/10.1007/s00366-018-0655-x.
  17. Hao, W., Tang, C., Yuan, Y. and Ma, Y. (2015), "Study on the effect of inclusion shape on crack-inclusion interaction using digital gradient sensing method", J. Adhes. Sci. Technol., 29(19), 2021-2034. https://doi.org/10.1080/01694243.2015.1045244.
  18. Hassani, M., Monfared, M.M. and Salarvand, A. (2023), "Multiple unequal cracks between an FGM orthotropic layer and an orthotropic substrate under mixed mode concentrated loads", Struct. Eng. Mech., 86(4), 535-546. https://doi.org/10.12989/sem.2023.86.4.535.
  19. He, J.C., Zhu, S.P., Taddesse, A.T. and Niu, X. (2022), "Evaluation of critical distance, highly stressed volume, and weakest-link methods in notch fatigue analysis", Int. J. Fatigue, 162, 106950. https://doi.org/10.1016/j.ijfatigue.2022.106950.
  20. Huang, C.S. and Lu, Y.E. (2023), "Analytical solutions for vibrations of rectangular functionally graded Mindlin plates with vertical cracks", Struct. Eng. Mech., 86(1), 69-83. https://doi.org/10.12989/sem.2023.86.1.069.
  21. Huang, K., Guo, L. and Yu, H. (2018), "Investigation on mixed-mode dynamic stress intensity factors of an interface crack in bi-materials with an inclusion", Compos. Struct., 202, 491-499. https://doi.org/10.1016/j.compstruct.2018.02.078.
  22. Kalyana Rama, J.S., Chauhan, D.R., Sivakumar, M.V.N., Vasan, A. and Murthy, A.R. (2017), "Fracture properties of concrete using damaged plasticity model-A parametric study", Struct. Eng. Mech., 64(1), 59-69. https://doi.org/10.12989/sem.2017.64.1.059.
  23. Katariya, P.V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel. Compos. Struct., 34(2), 279-288. https://doi.org/10.12989/scs.2020.34.2.279.
  24. Keshtegar, B., Motezaker, M., Kolahchi, R. and Trung, N-T. (2020), "Wave propagation and vibration responses in porous smart nanocomposite sandwich beam resting on Kerr foundation considering structural damping", Thin-Walled Struct., 154, 106820. https://doi.org/10.1016/j.tws.2020.106820.
  25. Kolahchi, R., Keshtegar, B. and Trung, T. (2021), "Optimization of dynamic properties for laminated multiphase nanocomposite sandwich conical shell in thermal and magnetic conditions", J. Sandw. Struct. Mater., 24(1). https://doi.org/10.1177/10996362211020388.
  26. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.
  27. Li, H., Yang, J. and Li, Z. (2014), "An approximate solution for the plane stress mode I crack interacting with an inclusion of arbitrary shape", Eng. Fract. Mech., 116, 190-196. https://doi.org/10.1016/j.engfracmech.2013.12.010.
  28. Luat, N.V., Lee, H., Shin, J., Park, J.H., Ahn, T.S. and Lee, K. (2022), "Experimental and numerical investigation of RC frames strengthened with a hybrid seismic retrofit system", Steel. Compos. Struct., 45(4), 563-577. https://doi.org/10.12989/scs.2022.45.4.563.
  29. Luong, V.D., Abbes, F., Hoang, M.P., Duong, P.T. and Abbes, B. (2021), "Finite element elastoplastic homogenization model of a corrugated-core sandwich structure", Steel. Compos. Struct., 41(3), 437. https://doi.org/10.12989/scs.2021.41.3.437.
  30. Mechab, B., Chama, M., Kaddouri, K. and Slimani, D. (2016), "Probabilistic elastic-plastic analysis of repaired cracks with bonded composite patch", Steel. Compos. Struct., 20, 1173-1182. http://dx.doi.org/10.12989/scs.2016.20.6.1173.
  31. Moulgada, A., Zagane, M.E., Benouis, A., Sahli, A., Cherfi, M. and Benbarek, S. (2018), "Modelling of the femoral fracture under dynamic loading", Journal Serbian Soc. Comput. Mech., 12(1), 96-107. https://doi.org/10.24874/jsscm.2018.12.01.07.
  32. Moulgada, A., Zagane, M.E., Sahli, A., Ait Kaci, D. and Zahi, R. (2020), "Comparative study of the repair of cracked plates with two different composite patches", Frat. Ed Integrita Strutt., 14(53), 187-201. https://doi.org/10.3221/IGF-ESIS.53.16.
  33. Neto, D.M., Cavaleiro, N., Sergio, E.R., Jesus, J., Camacho-Reyes, A. and Antunes, F.V. (2023), "Effect of crack flank holes on fatigue crack growth", Int. J. Fatigue, 170, 107505. https://doi.org/10.1016/j.ijfatigue.2023.107505.
  34. Peng, B. and Feng, M. (2015), "Study on the plane stress mode II crack-inclusion interaction with coupled mechanical and thermal strains", Arch. Appl. Mech., 85(6), 725-733. https://doi.org/10.1007/s00419-015-0985-8.
  35. Pham, Q.H., Nguyen, P.C., Tran, V.K. and Nguyen-Thoi, T. (2021), "Finite element analysis for functionally graded porous nano-plates resting on elastic foundation", Steel. Compos. Struct., 41(2), 149. https://doi.org/10.12989/scs.2021.41.2.149.
  36. Shahrezaei, M. and Moslemi, H. (2020), "Polygonal finite element modeling of crack propagation via automatic adaptive mesh refinement", Struct. Eng. Mech., 75(6), 685-699. https://doi.org/10.12989/sem.2020.75.6.685.
  37. Shan, L., Tan, C.Y., Shen, X., Ramesh, S., Zarei, M.S., Kolahchi, R. and Hajmohammad, M.H. (2023), "The effects of nano-additives on the mechanical, impact, vibration, and buckling/post-buckling properties of composites: A review", JMR&T, 24, 7570-7598. https://doi.org/10.1016/j.jmrt.2023.04.267.
  38. Srivastava, A., Ponson, L., Osovski, S., Bouchaud, E., Tvergaard, V. and Needleman, A. (2014), "Effect of inclusion density on ductile fracture toughness and roughness", J. Mech. Phys. Solids, 63(1), 62-79. https://doi.org/10.1016/j.jmps.2013.10.003.
  39. Tekoglu, C. and Nielsen, K.L. (2019), "Effect of damage-related microstructural parameters on plate tearing at steady state", Eur. J. Mech. A, 77, 103818. https://doi.org/10.1016/j.euromechsol.2019.103818.
  40. Wan, P.H., Al-Furjan, M.S.H. and Kolahchi, R. (2024), "Nonlinear flutter response and reliability of supersonic smart hybrid nanocomposite rupture trapezoidal plates subjected to yawed flow using DQHFEM", Aerosp. Sci. Technol., 145, 108862. https://doi.org/10.1016/j.ast.2023.108862.
  41. Xu, K., Yuan, Y. and Li, M. (2019), "Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets", Steel. Compos. Struct., 32(5), 633-642. https://doi.org/10.12989/scs.2019.32.5.633.
  42. Xu, Z., Chen, H., Qu, Z., Zhu, C. and Wang, X. (2022), "Nondestructive testing of local incomplete brazing defect in stainless steel core panel using pulsed eddy current", Materials, 15(16), 5689. https://doi.org/10.3390/ma15165689
  43. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org 10.12989/sem.2016.57.6.1143.
  44. Yaylaci, M. (2022), "Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method", Adv. Nano Res., 12(4), 405-414. https://doi.org/10.12989/anr.2022.12.4.405.
  45. Yaylaci, M., Uzun Yaylaci, E., Ozdemir, M.E., Ay, S. and Ozturk, S. (2022), "Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack", Steel. Compos. Struct., 45(4), 501-511. https://doi.org/10.12989/scs.2022.45.4.501.
  46. Yaylaci, M., Uzun Yaylaci, E., Ozdemir, M.E., Ozturk, S. and Sesli, H. (2023) "Vibration and buckling analyses of FGM beam with edge crack: Finite element and multilayer perceptron methods", Steel. Compos. Struct., 46(4), 565-575. https://doi.org/10.12989/scs.2023.46.4.565.
  47. Zafar, Z.U.A., DarAssi, M.H., Ahmad, I., Assiri, T.A., Meetei, M.Z., Khan, M.A. and Hassan, A.M. (2023), "Numerical simulation and analysis of the stochastic HIV/AIDS model in fractional order", Results Phys., 53, 106995. https://doi.org/10.1016/j.rinp.2023.106995.
  48. Zagane, M.S., Abdelmadjid, M., Abderahmane, S., Abdelghani, B. and Ali, B. (2023a), "Study of the fracture behavior of different structures by the extended finite element method (X-FEM)", Adv. Mater. Res., 12(4), 273-286. https://doi.org/10.12989/amr.2023.12.4.273.
  49. Zagane, M.S., Ali, B. and Abderahmen, S. (2020), "Effect of force during stumbling of the femur fracture with a different cemented total hip prosthesis", Biomater. Biomec. Bioeng, 5(1), 11-23. https://doi.org/10.12989/bme.2020.5.1.011.
  50. Zagane, M.S., Moulgada, A., Yaylaci, M., Abderahmen, S., Ozdemir, M.E. and Uzun Yaylaci, E. (2023b), "Numerical simulation of the total hip prosthesis under static and dynamic loading (for three activities)", Struct. Eng. Mech, 86(5), 635-645. https://doi.org/10.12989/sem.2023.86.5.635.
  51. Zhang, Z., Huang, C., Chen, S., Wan, M., Yang, M., Ji, S. and Zeng, W. (2022), "Effect of microstructure on high cycle fatigue behavior of 211Z. X-T6 aluminum alloy", Metals, 12(3), 387. https://doi.org/10.3390/met12030387.
  52. Zhao, G., Hao, W., Sheng, X., Luo, Y. and Guo, G. (2017), "Study of the interaction of matrix crack with inclusions of different shapes using the method of caustic", Arch. Appl. Mech., 87(9), 1427-1438. https://doi.org/10.1007/s00419-017-1261-x.