References
- Moon, J.: High-frequency capacitive wireless power transfer technologies. J. Power Electron. (2021). https://doi.org/10.1007/s43236-021-00262-4
- Erel, M.Z., Bayindir, K.C., Aydemir, M.T., Chaudhary, S.K., Guerrero, J.M.: A comprehensive review on wireless capacitive power transfer technology: fundamentals and applications. IEEE Access (2022). https://doi.org/10.1109/ACCESS.2021.3139761
- Yusop, Y., Saat, S., Nguang, S.K., Husin, H., Ghani, Z.: Design of capacitive power transfer using a class-E resonant inverter. J. Power Electron. 16(5), 1678-1688 (2016). https://doi.org/10.6113/JPE.2016.16.5.1678
- Yi, K.H.: 6.78 MHz capacitive coupling wireless power transfer system. J. Power Electron. 15(4), 987-993 (2015) https://doi.org/10.6113/JPE.2015.15.4.987
- Lu, F., Zhang, H., Hofmann, H., Mi, C.C.: A double-sided LC-compensation circuit for loosely coupled capacitive power transfer. IEEE Trans. Power Electron. 33(2), 1633-1643 (2018). https://doi.org/10.1109/TPEL.2017.2674688
- Xie, S., Su, Y., Zhou, W., Zhao, Y., Dai, X.: An electric-field coupled power transfer system with a double-sided LC network. J. Power Electron. 18(1), 289-299 (2018). https://doi.org/10.6113/JPE.2018.18.1.289
- Zhang, H., Lu, F., Hofmann, H., Liu, W., Mi, C.C.: A four-plate compact capacitive coupler design and LCL-compensated topology for capacitive power transfer in electric vehicle charging application. IEEE Trans. Power Electron. 31(12), 8541-8551 (2016)
- Lu, F., Zhang, H., Hofmann, H., Mi, C.: A double-sided LCLC-compensated capacitive power transfer system for electric vehicle charging. IEEE Trans. Power Electron. 30(11), 6011-6014 (2015) https://doi.org/10.1109/TPEL.2015.2446891
- Hu, Z., Goodall, M., Zhao, L., Zhu, Q., Hu, A.P.: A comparative study of different compensation topologies for capacitive power transfer. IEEE PELS Workshop Emerg. Technol.: Wireless Power Transfer (WoW) 2020, 389-394 (2020). https://doi.org/10.1109/WoW47795.2020.9291314
- Huang, L., Hu, A.P., Swain, A.K., Su, Y.: Z-impedance compensation for wireless power transfer based on electric field. IEEE Trans. Power Electron. 31(11), 7556-7563 (2016). https://doi.org/10.1109/TPEL.2016.2557461
- Sinha, S., Kumar, A., Regensburger, B., Afridi, K.K.: Design of high-efficiency matching networks for capacitive wireless power transfer systems. IEEE J. Emerg. Select. Topics Power Electron. 10(1), 104-127 (2022). https://doi.org/10.1109/JESTPE.2020.3023121
- Reatti, A., Pugi, L., Corti, F. and Grasso, F.: Effect of misalignment in a four plates capacitive wireless power transfer system. In: 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe, pp. 1-4 (2020)
- Shekhar, S., Mishra, S., Joshi, A.: A utility interfaced half-bridge based capacitively coupled power transfer circuit with automatic frequency control. IEEE Energy Convers. Congress Expos. 2013, 1598-1602 (2013). https://doi.org/10.1109/ECCE.2013.6646896
- Jeong, C.H., Choi, H.S., Choi, S.J.: Single-stage PWM converter for Dual-mode control of capacitive wireless power transmission. IEEE PELS Workshop Emerg. Technol.: Wireless Power Transfer (Wow) 2018, 1-5 (2018). https://doi.org/10.1109/WoW.2018.8450920
- Lu, K., Nguang, S.K., Ji, S., Wei, L.: Design of auto frequency tuning capacitive power transfer system based on class-E 2 DC/DC converter. IET Power Electron. 10(12), 1588-1595 (2017) https://doi.org/10.1049/iet-pel.2016.0655
- CHAPTER II - frequencies, ARTICLE 5 frequency allocations, Section IV. ITU radio regulations
- Lim, Y., Tang, H., Lim, S., Park, J.: An adaptive impedance-matching network based on a novel capacitor matrix for wireless power transfer. IEEE Trans. Power Electron. 29(8), 4403-4413 (2014). https://doi.org/10.1109/TPEL.2013.2292596
- Kumar, A., Sinha, S., Afridi, K.K.: A high-frequency inverter architecture for providing variable compensation in wireless power transfer systems. IEEE Appl. Power Electron. Conf. Expos. (APEC) 2018, 3154-3159 (2018). https://doi.org/10.1109/APEC.2018.8341552
- Sinha, S., Kumar, A. and Afridi, K.K.: Active variable reactance rectifier-a new approach to compensating for coupling variations in wireless power transfer systems. 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), Stanford, CA, USA, pp. 1-8 (2017).https://doi.org/10.1109/COMPEL.2017.8013348
- Sinha, S., Kumar, A., Regensburger, B., Afridi, K.K.: Active variable reactance rectifier-a new approach to compensating for coupling variations in wireless power transfer systems. IEEE J. Emerg. Select. Topics Power Electron. 8(3), 2022-2040 (2020). https://doi.org/10.1109/JESTPE.2019.2958894
- Abramov, E., Peretz, M.M.: Multi-loop control for power transfer regulation in capacitive wireless systems by means of variable matching networks. IEEE J. Emerg. Select. Topics Power Electron. 8(3), 2095-2110 (2020). https://doi.org/10.1109/JESTPE.2019.2935631
- Jurkov, A.S., Radomski, A., Perreault, D.J.: Tunable matching networks based on phase-switched impedance modulation1. IEEE Trans. Power Electron. 35(10), 10150-10167 (2020). https://doi.org/10.1109/TPEL.2020.2980214
- Gu, W.-J., Harada, K.: A new method to regulate resonant converters. IEEE Trans. Power Electron. 3(4), 430-439 (1988). https://doi.org/10.1109/63.17964
- Abramov, E., Alonso, J.M., Peretz, M.M.: Analysis and behavioural modelling of matching networks for resonant-operating capacitive wireless power transfer. IET Power Electron. 12(10), 2615-2625 (2019) https://doi.org/10.1049/iet-pel.2018.6136
- Yi, L., Moon, J.: Design of effcient double-sided LC matching networks for capacitive wireless power transfer system. IEEE PELS Workshop Emerg. Technol.: Wireless Power Transfer (WoW) 2021, 1-5 (2021). https://doi.org/10.1109/WoW51332.2021.9462873
- Luo, B., Wu, S., Zhou, N.: Flexible design method for multi-repeater wireless power transfer system based on coupled resonator bandpass filter model. IEEE Trans. Circuits Syst. I Regul. Pap. 61(11), 3288-3297 (2014). https://doi.org/10.1109/TCSI.2014.2327331