DOI QR코드

DOI QR Code

Double-sided LC-compensated capacitive wireless power transfer system with admittance-based matching networks

  • Lifang Yi (Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering, Florida State University) ;
  • Jinyeong Moon (Department of Electrical and Computer Engineering, FAMU-FSU College of Engineering, Florida State University)
  • Received : 2023.05.01
  • Accepted : 2023.11.24
  • Published : 2024.04.20

Abstract

Designing a capacitive wireless power transfer system is challenging due to the variable coupling capacitance caused by the physical misalignment of the plates of the coupling capacitor. This paper presents a double-sided LC-compensated capacitive wireless power transfer system. An admittance-based matching network design is proposed and analyzed in detail. The proposed approach exhibits excellent constant output power subject to physical misalignment. Furthermore, this technique suppresses other fluctuations in the circuit parameters and responses during coupling variations. Two matching networks designed with the admittance-based approach are utilized to maintain the constant equivalent input admittance of the system. Mathematical models are derived to analyze the characteristics of the proposed topology. The parameter design method is also provided to achieve the required compensation range. The proposed approach offers a comprehensive and general approach to addressing the challenges posed by physical misalignment and paves the way for practical implementations. Finally, a prototype is built based on a 2 MHz design example to verify the theoretical analysis.

Keywords

References

  1. Moon, J.: High-frequency capacitive wireless power transfer technologies. J. Power Electron. (2021). https://doi.org/10.1007/s43236-021-00262-4 
  2. Erel, M.Z., Bayindir, K.C., Aydemir, M.T., Chaudhary, S.K., Guerrero, J.M.: A comprehensive review on wireless capacitive power transfer technology: fundamentals and applications. IEEE Access (2022). https://doi.org/10.1109/ACCESS.2021.3139761 
  3. Yusop, Y., Saat, S., Nguang, S.K., Husin, H., Ghani, Z.: Design of capacitive power transfer using a class-E resonant inverter. J. Power Electron. 16(5), 1678-1688 (2016). https://doi.org/10.6113/JPE.2016.16.5.1678 
  4. Yi, K.H.: 6.78 MHz capacitive coupling wireless power transfer system. J. Power Electron. 15(4), 987-993 (2015)  https://doi.org/10.6113/JPE.2015.15.4.987
  5. Lu, F., Zhang, H., Hofmann, H., Mi, C.C.: A double-sided LC-compensation circuit for loosely coupled capacitive power transfer. IEEE Trans. Power Electron. 33(2), 1633-1643 (2018). https://doi.org/10.1109/TPEL.2017.2674688 
  6. Xie, S., Su, Y., Zhou, W., Zhao, Y., Dai, X.: An electric-field coupled power transfer system with a double-sided LC network. J. Power Electron. 18(1), 289-299 (2018). https://doi.org/10.6113/JPE.2018.18.1.289 
  7. Zhang, H., Lu, F., Hofmann, H., Liu, W., Mi, C.C.: A four-plate compact capacitive coupler design and LCL-compensated topology for capacitive power transfer in electric vehicle charging application. IEEE Trans. Power Electron. 31(12), 8541-8551 (2016) 
  8. Lu, F., Zhang, H., Hofmann, H., Mi, C.: A double-sided LCLC-compensated capacitive power transfer system for electric vehicle charging. IEEE Trans. Power Electron. 30(11), 6011-6014 (2015)  https://doi.org/10.1109/TPEL.2015.2446891
  9. Hu, Z., Goodall, M., Zhao, L., Zhu, Q., Hu, A.P.: A comparative study of different compensation topologies for capacitive power transfer. IEEE PELS Workshop Emerg. Technol.: Wireless Power Transfer (WoW) 2020, 389-394 (2020). https://doi.org/10.1109/WoW47795.2020.9291314 
  10. Huang, L., Hu, A.P., Swain, A.K., Su, Y.: Z-impedance compensation for wireless power transfer based on electric field. IEEE Trans. Power Electron. 31(11), 7556-7563 (2016). https://doi.org/10.1109/TPEL.2016.2557461 
  11. Sinha, S., Kumar, A., Regensburger, B., Afridi, K.K.: Design of high-efficiency matching networks for capacitive wireless power transfer systems. IEEE J. Emerg. Select. Topics Power Electron. 10(1), 104-127 (2022). https://doi.org/10.1109/JESTPE.2020.3023121 
  12. Reatti, A., Pugi, L., Corti, F. and Grasso, F.: Effect of misalignment in a four plates capacitive wireless power transfer system. In: 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe, pp. 1-4 (2020) 
  13. Shekhar, S., Mishra, S., Joshi, A.: A utility interfaced half-bridge based capacitively coupled power transfer circuit with automatic frequency control. IEEE Energy Convers. Congress Expos. 2013, 1598-1602 (2013). https://doi.org/10.1109/ECCE.2013.6646896 
  14. Jeong, C.H., Choi, H.S., Choi, S.J.: Single-stage PWM converter for Dual-mode control of capacitive wireless power transmission. IEEE PELS Workshop Emerg. Technol.: Wireless Power Transfer (Wow) 2018, 1-5 (2018). https://doi.org/10.1109/WoW.2018.8450920 
  15. Lu, K., Nguang, S.K., Ji, S., Wei, L.: Design of auto frequency tuning capacitive power transfer system based on class-E 2 DC/DC converter. IET Power Electron. 10(12), 1588-1595 (2017)  https://doi.org/10.1049/iet-pel.2016.0655
  16. CHAPTER II - frequencies, ARTICLE 5 frequency allocations, Section IV. ITU radio regulations 
  17. Lim, Y., Tang, H., Lim, S., Park, J.: An adaptive impedance-matching network based on a novel capacitor matrix for wireless power transfer. IEEE Trans. Power Electron. 29(8), 4403-4413 (2014). https://doi.org/10.1109/TPEL.2013.2292596 
  18. Kumar, A., Sinha, S., Afridi, K.K.: A high-frequency inverter architecture for providing variable compensation in wireless power transfer systems. IEEE Appl. Power Electron. Conf. Expos. (APEC) 2018, 3154-3159 (2018). https://doi.org/10.1109/APEC.2018.8341552 
  19. Sinha, S., Kumar, A. and Afridi, K.K.: Active variable reactance rectifier-a new approach to compensating for coupling variations in wireless power transfer systems. 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL), Stanford, CA, USA, pp. 1-8 (2017).https://doi.org/10.1109/COMPEL.2017.8013348 
  20. Sinha, S., Kumar, A., Regensburger, B., Afridi, K.K.: Active variable reactance rectifier-a new approach to compensating for coupling variations in wireless power transfer systems. IEEE J. Emerg. Select. Topics Power Electron. 8(3), 2022-2040 (2020). https://doi.org/10.1109/JESTPE.2019.2958894 
  21. Abramov, E., Peretz, M.M.: Multi-loop control for power transfer regulation in capacitive wireless systems by means of variable matching networks. IEEE J. Emerg. Select. Topics Power Electron. 8(3), 2095-2110 (2020). https://doi.org/10.1109/JESTPE.2019.2935631 
  22. Jurkov, A.S., Radomski, A., Perreault, D.J.: Tunable matching networks based on phase-switched impedance modulation1. IEEE Trans. Power Electron. 35(10), 10150-10167 (2020). https://doi.org/10.1109/TPEL.2020.2980214 
  23. Gu, W.-J., Harada, K.: A new method to regulate resonant converters. IEEE Trans. Power Electron. 3(4), 430-439 (1988). https://doi.org/10.1109/63.17964 
  24. Abramov, E., Alonso, J.M., Peretz, M.M.: Analysis and behavioural modelling of matching networks for resonant-operating capacitive wireless power transfer. IET Power Electron. 12(10), 2615-2625 (2019)  https://doi.org/10.1049/iet-pel.2018.6136
  25. Yi, L., Moon, J.: Design of effcient double-sided LC matching networks for capacitive wireless power transfer system. IEEE PELS Workshop Emerg. Technol.: Wireless Power Transfer (WoW) 2021, 1-5 (2021). https://doi.org/10.1109/WoW51332.2021.9462873 
  26. Luo, B., Wu, S., Zhou, N.: Flexible design method for multi-repeater wireless power transfer system based on coupled resonator bandpass filter model. IEEE Trans. Circuits Syst. I Regul. Pap. 61(11), 3288-3297 (2014). https://doi.org/10.1109/TCSI.2014.2327331