Acknowledgement
This work was supported by the key scientific research project of Chongqing Municipal Education Commission under Grant No. KJZD-K202300610, and the Chongqing Graduate Innovation Project under Grant No. CYS22444.
References
- Iwamuro, N., Laska, T.: IGBT history, state-of-the-art, and future prospects. IEEE Trans. Electron Devices 64(3), 741-752 (2017) https://doi.org/10.1109/TED.2017.2654599
- Disney, D., Letavic, T., Trajkovic, T., Terashima, T., Nakagawa, A.: High-voltage integrated circuits: history, state of the art, and future prospects. IEEE Trans. Electron Devices 64(3), 659-673 (2017) https://doi.org/10.1109/TED.2016.2631125
- Udrea, F., Deboy, G., Fujihira, T.: Superjunction power devices, history, development, and future prospects. IEEE Trans. Electron Devices 64(3), 713-727 (2017) https://doi.org/10.1109/TED.2017.2658344
- Luo, C., Shen, L., Xu, A.: Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints. Reliab. Eng. Syst. Saf. 218(8), 108136 (2022)
- Dankovic, D., Manic, I., Prijic, A., Davidovic, V., Prijic, Z., Golubovic, S., Djoric-Veljkovic, S., Paskaleva, A., Spassov, D., Stojadinovic, N.: A review of pulsed NBTI in P-channel power VDMOSFETs. Microelectron. Reliab. 82, 28-36 (2018) https://doi.org/10.1016/j.microrel.2018.01.003
- Rahimo, M.T., Shammas, N.Y.A.: Freewheeling diode reverse-recovery failure modes in IGBT applications. IEEE Trans. Ind. Appl. 37(2), 661-670 (2001) https://doi.org/10.1109/28.913734
- Sakurai, K., Maeda, D. and Hasegawa, H.: Three-Input Type Single-Chip Inverter IC including a Function to Generate Six Signals and Dead Time. 2008 20th International Symposium on Power Semiconductor Devices and IC's (2008). https://doi.org/10.1109/ISPSD.2008.4538964
- Chen, W., Huang, Y., He, L., Han, Z., Huang, Y.: A snapback-free TOL-RC-LIGBT with vertical P-collector and N-buffer design. Chin. Phys. B 27(8), 088501 (2018)
- Wang, H.: Investment Efficiency and Cost Analysis of New Renewable Energy Sources. 2020 IEEE Sustainable Power and Energy Conference (2020). https://doi.org/10.1109/iSPEC50848.2020.9351110
- Rahimo, M., Schlapbach, U., Kopta, A., Vobecky, J., Schneider, D. and Baschnagel, A.: A High Current 3300V Module Employing Reverse Conducting IGBTs Setting a New Benchmark in Output Power Capability. 2008 20th International Symposium on Power Semiconductor Devices and IC's (2008). https://doi.org/10.1109/ISPSD.2008.4538899
- Rahimo, M., Kopta, A., Schlapbach, U., Vobecky, J., Schnell, R. and Klaka, S: The Bi-mode Insulated Gate Transistor (BIGT) a potential technology for higher power applications. 2009 21st International Symposium on Power Semiconductor Devices & IC's(2009).https://doi.org/10.1109/ISPSD.2009.5158057
- Adachi, S.: Automotive power module technologies for high speed switching. International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. 1-7(2016)
- Griebl, E., Lorenz, L. and Purschel, M.: LightMOS a new power semiconductor concept dedicated for lamp ballast application. 38th IAS Annual Meeting on Conference Record of the Industry Applications Conference. 2, 768-772 (2003)
- Xu, X., Chen, Z.: Simulation study of a novel full turn-on RCIGBT with ultralow energy loss. IEEE Electron Device Lett. 40(5), 757-760 (2019) https://doi.org/10.1109/LED.2019.2905145
- Yi, B., Zhao, Q., Zhang, Q.: Low-loss carrier-stored IGBT with p-type Schottky diode-clamped shielding layer. J. Power Electron. 21, 1225-1232 (2021) https://doi.org/10.1007/s43236-021-00265-1
- Chen, W., Lin, X., Li, S.: A snapback-free reverse-conducting IGBT with multiple extraction channels. J. Power Electron. 22, 377-382 (2022) https://doi.org/10.1007/s43236-021-00347-0
- Chen, W., Huang, Y., Li, S., Huang, Y., Han, Z.: A snapback-free and low-loss RC-IGBT with lateral FWD integrated in the terminal region. IEEE Access. 7, 183589-183595 (2019) https://doi.org/10.1109/ACCESS.2019.2960438
- Wu, Y.: 650 V super-junction insulated gate bipolar transistor based on 45 ㎛ ultrathin wafer technology. IEEE Electron Device Lett. 43(4), 592-595 (2022) https://doi.org/10.1109/LED.2022.3154782
- Luther-King, N., Sweet, M., Madathil Sankara Narayanan, E.: Clustered insulated gate bipolar transistor in the super junction concept: the SJ-TCIGBT. IEEE Trans. Power Electronics. 27(6), 3072-3080 (2012) https://doi.org/10.1109/TPEL.2011.2162965
- Chen, W., Cheng, J., Huang, H., Zhang, B., Chen, X.B.: The oppositely doped islands IGBT achieving ultralow turn of loss. IEEE Trans. Electron Devices 66(8), 3690-3693 (2019) https://doi.org/10.1109/TED.2019.2924093
- Huang, J., Huang, H., Chen, X.B.: Simulation study of a low ON-state voltage superjunction IGBT with self-biased PMOS. IEEE Trans. Electron Devices 66(7), 3242-3246 (2019) https://doi.org/10.1109/TED.2019.2917261
- Huang, M., Gao, B., Yang, Z., Lai, L., Gong, M.: A carrier-storage-enhanced superjunction IGBT with ultralow loss and on-state voltage. IEEE Electron Device Lett. 39(2), 264-267 (2018) https://doi.org/10.1109/LED.2017.2788458
- Chen, W., Wei, Z., Zhang, H., Huang, Y., Han, Z.: An SOI LTIGBT with self-biased pMOS for improved short-circuit property and reduced turn-of loss. IEEE Trans. Electron Devices (2023). https://doi.org/10.1109/TED.2023.3241880
- Synopsys: Sysnopsys TCAD Sentaurus Device User Guide. Mountain View (2019)