DOI QR코드

DOI QR Code

Sub-synchronous resonance in grid-forming PMSGs connected to series-compensated networks

  • Han Jiang (School of Electrical Engineering, Xi'an Jiaotong University) ;
  • Zhengchun Du (School of Electrical Engineering, Xi'an Jiaotong University) ;
  • Xiaotian Yuan (School of Electrical Engineering, Xi'an Jiaotong University) ;
  • Jinlong Han (School of Electrical Engineering, Xi'an Jiaotong University)
  • Received : 2023.03.28
  • Accepted : 2023.12.07
  • Published : 2024.04.20

Abstract

The sub-synchronous resonance (SSR) characteristics and countermeasures of grid-forming permanent magnet synchronous generators (PMSGs) controlled by DC voltage synchronization control (DVSC) are investigated in this paper. First, small-signal models of two PMSGs connected to a series-compensated network are established, where a recently developed grid-forming control, i.e., DVSC is applied. Then, a modal-analysis method is conducted to evaluate the impacts of the control parameters, series compensation level (SCL), and electrical distances on stability. It is interesting to see that PMSGs with DVSC exhibit unstable SSR like traditional synchronous generators. Moreover, the dominant wind turbine (WT) is investigated using participate factor analysis. Then, a simple but effective SSR damping controller (SSRDC) is designed using feedforward control signals, which is only activated when SSR occurs. It is shown that the designed controller can provide strong damping support for SSR suppression. Electromagnetic transient simulations are performed in different scenarios to find the unstable SSR conditions, as well as to verify the correctness of the SSR analysis and the effectiveness of the proposed SSR damping scheme.

Keywords

Acknowledgement

This work is supported by: National Key Research and Development Program of China (2022YFB2402705), and Science and Technology Program of State Grid (52272222001J).

References

  1. Adams J., Carter, C., Huang. S.: ERCOT experience with subsynchronous control interaction and proposed remediation. In: 2012 IEEE/PES Transmission and Distribution Conference and Exposition, pp. 1-5 (2012) 
  2. Sewdien, V., Preece, R., Rueda-Torres, J., van der Meijden, M.: Systematic procedure for mitigating DFIG-SSR using phase imbalance compensation. IEEE Trans. Sustain Energy 13(1), 101-110 (2022)  https://doi.org/10.1109/TSTE.2021.3104719
  3. Leon, A.E., Amodeo, S.J., Mauricio, J.M.: Enhanced compensation filter to mitigate subsynchronous oscillations in series-compensated DFIG-based wind farms. IEEE Trans. Power Deliv. 36(6), 3805-3814 (2021)  https://doi.org/10.1109/TPWRD.2021.3049318
  4. Wang, L., et al.: Damping of subsynchronous resonance in a hybrid system with a steam-turbine generator and an offshore wind farm using a unified power-flow controller. IEEE Trans. Ind. Appl. 57(1), 110-120 (2021)  https://doi.org/10.1109/TIA.2020.3032934
  5. Liu, H., Xie, X., Liu, W.: An oscillatory stability criterion based on the unified dq-frame impedance network model for power systems with high-penetration renewables. IEEE Trans. Power Syst. 33(3), 3472-3485 (2018) 
  6. Yang, S., et al.: PLL based sub-/super-synchronous resonance damping controller for D-PMSG wind farm integrated power systems. IEEE Trans. Energy Convers. 37(4), 2370-2384 (2022)  https://doi.org/10.1109/TEC.2022.3174057
  7. Xie, X., Liu, H., He, J., Zhang, C., Qiao, Y.: Mechanism and characteristics of subsynchronous oscillation caused by the interaction between full-converter wind turbines and AC systems. Proc. CSEE 36, 2366-2372 (2016) 
  8. Cheng, Y., Huang, S.H., Rose, J.: A series capacitor based frequency scan method for SSR studies. IEEE Trans. Power Deliv. 34(6), 2135-2144 (2019)  https://doi.org/10.1109/TPWRD.2019.2914660
  9. Ren, W., Larsen, E.: A refined frequency scan approach to subsynchronous control interaction (SSCI) study of wind farms. IEEE Trans. Power Syst. 31(5), 3904-3912 (2016)  https://doi.org/10.1109/TPWRS.2015.2501543
  10. Yuan, X., et al.: An effective control scheme for multimodal SSR suppression via VSC-based controller. IEEE Access 8, 172581-172592 (2020)  https://doi.org/10.1109/ACCESS.2020.3025152
  11. Du, W., Wang, Y., Wang, H., Xiao, X., Wang, X., Xie, X.: Analytical examination on the amplifying effect of weak grid connection for the DFIGs to induce torsional sub-synchronous oscillations. IEEE Trans. Power Deliv. 35(4), 1928-1938 (2020)  https://doi.org/10.1109/TPWRD.2019.2957005
  12. Liu, A., et al.: Impedance modeling of DFIG wind farms with various rotor speeds and frequency coupling. IEEE Trans. Circuits Syst. II Express Briefs 68(1), 406-410 (2021) 
  13. Liu, H., Xie, X., Zhang, C., Li, Y., Liu, H., Hu, Y.: Quantitative SSR analysis of series-compensated DFIG-based wind farms using aggregated RLC circuit model. IEEE Trans. Power Syst. 32(1), 474-483 (2017) 
  14. Li, Y., Liu, H., Yin, M., Song, W.: SSR analysis of DFIG-based series-compensated system based on complex torque analysis method. In: 2018 International Conference on Power System Technology, pp 1903-1908 (2018) 
  15. Zhu, X., Sun, H., Wen, J., Cheng, S.: Improved complex torque coefficient method using CPCM for multi-machine system SSR analysis. IEEE Trans. Power Syst. 29(5), 2060-2068 (2014)  https://doi.org/10.1109/TPWRS.2014.2303808
  16. Zhu, C., Hu, M., Wu, Z.: Parameters impact on the performance of a double-fed induction generator-based wind turbine for subsynchronous resonance control. IET Renew. Power Gener. 6, 92-98 (2012)  https://doi.org/10.1049/iet-rpg.2010.0138
  17. Zhang, L., Harnefors, L., Nee, H.-P.: Interconnection of two very weak AC systems by VSC-HVDC links using power-synchronization control. IEEE Trans. Power Syst. 26(1), 344-355 (2011)  https://doi.org/10.1109/TPWRS.2010.2047875
  18. Zhang, L., Harnefors, L., Nee, H.-P.: Power-synchronization control of grid-connected voltage-source converters. IEEE Trans. Power Syst. 25(2), 809-820 (2010)  https://doi.org/10.1109/TPWRS.2009.2032231
  19. Ketabipour, S., Samet, H., Vafamand, N.: TS fuzzy prediction-based SVC compensation of wind farms ficker: a dual-UKF approach. CSEE J. Power Energy Syst. 8(6), 1594-1602 (2022) 
  20. Li, G., Chen, Y., Luo, A., Wang, H.: An enhancing grid stiffness control strategy of STATCOM/BESS for damping sub-synchronous resonance in wind farm connected to weak grid. IEEE Trans. Ind. Inform. 16(9), 5835-5845 (2020)  https://doi.org/10.1109/TII.2019.2960863
  21. Sun, P., Yao, J., Liu, R., Pei, J., Zhang, H., Liu, Y.: Virtual capacitance control for improving dynamic stability of the DFIG-based wind turbines during a symmetrical fault in a weak AC grid. IEEE Trans. Ind. Electron. 68(1), 333-346 (2021)  https://doi.org/10.1109/TIE.2019.2962459
  22. Hu, Q., Fu, L., Ma, F., Ji, F., Zhang, Y.: Analogized synchronous-generator model of PLL-based VSC and transient synchronizing stability of converter dominated power system. IEEE Trans. Sustain. Energy 12(2), 1174-1185 (2021)  https://doi.org/10.1109/TSTE.2020.3037155
  23. Li, Y., et al.: PLL synchronization stability analysis of MMC-connected wind farms under high-impedance AC faults. IEEE Trans. Power Syst. 36(3), 2251-2261 (2021)  https://doi.org/10.1109/TPWRS.2020.3025917
  24. Xu, Y., Nian, H., Hu, B., Sun, D.: Impedance modeling and stability analysis of VSG controlled type-IV wind turbine system. IEEE Trans. Energy Convers. 36(4), 3438-3448 (2021)  https://doi.org/10.1109/TEC.2021.3062232
  25. Tessaro, H.J., de Oliveira, R.V.: Impact assessment of virtual synchronous generator on the electromechanical dynamics of type 4 wind turbine generators. IET Gener. Transm. Distrib. 13, 5294-5304 (2019)  https://doi.org/10.1049/iet-gtd.2019.0818
  26. Li, Y., Yuan, X., Li, J., Xiao, H., Xu, Z., Du, Z.: Novel Grid-forming control of permanent magnet synchronous generator-based wind turbine for integrating weak AC grid without sacrificing maximum power point tracking. IET Gener. Transm. Distrib. 15, 1613-1625 (2021)  https://doi.org/10.1049/gtd2.12121
  27. Yuan, X., et al.: Novel cascading scheme of VSC-HVDC with DC voltage synchronisation control for system frequency support. IET Gener. Transm. Distrib. 15, 3502-3519 (2021) https://doi.org/10.1049/gtd2.12273