Acknowledgement
This work was supported in part by the National Natural Science Foundation of China under Grant 62371233 and 52177049, in part by the Natural Science Youth Foundation of Jiangsu Province under Grant BK20210305, in part by Nanjing University of Aeronautics and Astronautics Youth Science and Technology Innovation Funding under Grant NS2022031 and NS2023053, in part by the Fundamental Research Funds for the Central Universities under Grant NJ2022014, in part by Aviation Science Foundation Project under Grant 2022Z024052003, and Nanjing University of Aeronautics and Astronautics prospective research project and Grant ILA220531A23.
References
- Lesnicar, A., Marquardt, R.: An innovative modular multilevel converter topology suitable for a wide power range. In: 2003 IEEE Bologna Power Tech Conference Proceedings, vol. 3, p. 6 (2003)
- Hagiwara, M., Akagi, H.: Control and experiment of pulsewidth-modulated modular multilevel converters. IEEE Trans. Power Electron. 24(7), 1737-1746 (2009)
- Saeedifard, M., Iravani, R.: Dynamic performance of a modular multilevel back-to-back HVDC system. IEEE Trans. Power Deliv. 25(4), 2903-2912 (2010) https://doi.org/10.1109/TPWRD.2010.2050787
- Wang, C., Xiao, L., Zhang, L., Wu, F., Liu, Q.: Analysis of distortions in switch drives and currents related to balance strategy with sort method in MMC systems. J. Power Electron. 20(2), 399-409 (2020) https://doi.org/10.1007/s43236-020-00046-2
- Wang, C., Zhang, L., Zhang, Z., Tao, Y.: Imbalance phenomenon caused by CPS-PWM strategy for MMC systems. J. Power Electron. 21(1), 59-70 (2021) https://doi.org/10.1007/s43236-020-00165-w
- Nami, A., Liang, J., Dijkhuizen, F., Demetriades, G.D.: Modular multilevel converters for HVDC applications: review on converter cells and functionalities. IEEE Trans. Power Electron. 30(1), 18-36 (2015) https://doi.org/10.1109/TPEL.2014.2327641
- Debnath, S., Qin, J., Bahrani, B., Saeedifard, M., Barbosa, P.: Operation, control, and applications of the modular multilevel converter: a review. IEEE Trans. Power Electron. 30(1), 37-53 (2015) https://doi.org/10.1109/TPEL.2014.2309937
- Hu, J., Xiang, M., Lin, L., Lu, M., Zhu, J., He, Z.: Improved design and control of FBSM MMC with boosted AC voltage and reduced DC capacitance. IEEE Trans. Ind. Electron. 65(3), 1919-1930 (2018) https://doi.org/10.1109/TIE.2017.2739679
- Zhao, C., Wang, Z., Li, Z., Wang, P., Li, Y.: Characteristics analysis of capacitor voltage ripples and dimensioning of full-bridge MMC with zero sequence voltage injection. IEEE J. Emerg. Sel. Top. Power Electron. 7(3), 2106-2115 (2019) https://doi.org/10.1109/JESTPE.2018.2878411
- Zhao, C., et al.: Energy storage requirements optimization of full-bridge MMC with third-order harmonic voltage injection. IEEE Trans. Power Electron. 34(12), 11661-11678 (2019) https://doi.org/10.1109/TPEL.2019.2906349
- Zhao, C., Luan, K., Zhang, H., Li, Z., Wang, P., Li, Y.: Enhancement of ZSVI by circulating current injection for full-bridge MMC with low energy storage requirements. IEEE J. Emerg. Sel. Top. Power Electron. 8(4), 4075-4085 (2020) https://doi.org/10.1109/JESTPE.2019.2927690
- Zeng, R., Xu, L., Yao, L., Williams, B.W.: Design and operation of a hybrid modular multilevel converter. IEEE Trans. Power Electron. 30(3), 1137-1146 (2015)
- Rohner, S., Bernet, S., Hiller, M., Sommer, R.: Modulation, losses, and semiconductor requirements of modular multilevel converters. IEEE Trans. Ind. Electron. 57(8), 2633-2642 (2010) https://doi.org/10.1109/TIE.2009.2031187
- Qin, J., Saeedifard, M.: Reduced switching-frequency voltage-balancing strategies for modular multilevel HVDC converters. IEEE Trans. Power Deliv. 28(4), 2403-2410 (2013)
- Deng, F., Chen, Z.: Voltage-balancing method for modular multilevel converters switched at grid frequency. IEEE Trans. Ind. Electron. 62(5), 2835-2847 (2015) https://doi.org/10.1109/TIE.2014.2362881
- Deng, F., Chen, Z.: Voltage-balancing method for modular multilevel converters under phase-shifted carrier-based pulsewidth modulation. IEEE Trans. Ind. Electron. 62(7), 4158-4169 (2015) https://doi.org/10.1109/TIE.2014.2388195
- Wang, C., Xiao, L., Jiang, H., Cai, T.: Analysis and compensation of the system time delay in an MMC system. IEEE Trans. Power Electron. 33(11), 9923-9936 (2018)
- Wang, C., Xiao, L., Wang, C., Xin, M., Jiang, H.: Analysis of the unbalance phenomenon caused by the PWM delay and modulation frequency ratio related to the CPS-PWM strategy in an MMC system. IEEE Trans. Power Electron. 34(4), 3067-3080 (2019) https://doi.org/10.1109/TPEL.2018.2849088
- Wang, C., Zhang, L., Xiao, L., Wu, F., Zheng, X., Jiang, H.: Analysis and suppression of the frequency-decrease effect in the capacitor voltage related to the low modulation frequency ratio in an MMC system. IEEE Trans. Power Electron. 35(9), 9119-9132 (2020) https://doi.org/10.1109/TPEL.2020.2969807
- Muthavarapu, A.K., Biswas, J., Barai, M.: an efficient sorting algorithm for capacitor voltage balance of modular multilevel converter with space vector pulsewidth modulation. IEEE Trans. Power Electron. 37(8), 9254-9265 (2022) https://doi.org/10.1109/TPEL.2022.3160665
- Zhou, L., Chen, C., Xiong, J., Zhang, K.: A robust capacitor voltage balancing method for CPS-PWM-based modular multilevel converters accommodating wide power range. IEEE Trans. Power Electron. 37(12), 14306-14316 (2022)
- Geng, Z., Han, M., Yan, W.: Phase delay compensation and average capacitor voltage based currentless voltage balancing methods for modular multilevel converters. IEEE Trans. Power Deliv. 38(2), 821-832 (2023) https://doi.org/10.1109/TPWRD.2022.3199588
- Wang, Z., Peng, L., Zhang, J.: Decomposed nearest level PWM method with reduced switching frequency for MMC. IEEE Trans. Power Electron. 38(3), 3340-3351 (2023) https://doi.org/10.1109/TPEL.2022.3219470
- Yin, T., Lin, L., Xu, C., Zhu, D., Jing, K.: A hybrid modular multilevel converter comprising SiC MOSFET and Si IGBT with its specialized modulation and voltage balancing scheme. IEEE Trans. Ind. Electron. 69(11), 11272-11282 (2022) https://doi.org/10.1109/TIE.2021.3118372
- Lin, L., Lin, Y., Xu, C., Chen, Y.: Comprehensive analysis of capacitor voltage fuctuation and capacitance design for submodules in hybrid modular multilevel converter with boosted modulation index. IEEE J. Emerg. Sel. Top. Power Electron. 7(4), 2369-2383 (2019) https://doi.org/10.1109/JESTPE.2018.2861469
- Lee, J.-H., Jung, J.-J., Sul, S.-K.: Balancing of submodule capacitor voltage of hybrid modular multilevel converter under DC-bus voltage variation of HVDC system. IEEE Trans. Power Electron. 34(11), 10458-10470 (2019) https://doi.org/10.1109/TPEL.2019.2896336
- Lu, M., Hu, J., Zeng, R., Li, W., Lin, L.: Imbalance mechanism and balanced control of capacitor voltage for a hybrid modular multilevel converter. IEEE Trans. Power Electron. 33(7), 5686-5696 (2018) https://doi.org/10.1109/TPEL.2017.2743780
- Dong, Y., Tang, J., Yang, H., Li, W., He, X.: Capacitor voltage balance control of hybrid modular multilevel converters with second-order circulating current injection. IEEE J. Emerg. Sel. Top. Power Electron. 7(1), 157-167 (2019) https://doi.org/10.1109/JESTPE.2018.2879915
- Bandaru, T., Samajdar, D., Varma, P.B.S., Bhattacharya, T., Chatterjee, D.: Optimum injection of second harmonic circulating currents for balancing capacitor voltages in hybrid MMC during reduced DC voltage conditions. IEEE Trans. Ind. Appl. 56(2), 1649-1660 (2020) https://doi.org/10.1109/TIA.2020.2967277
- Hu, P., Teodorescu, R., Guerrero, J.M.: Negative-sequence second-order circulating current injection for hybrid MMC under over-modulation conditions. IEEE J. Emerg. Sel. Top. Power Electron. 8(3), 2508-2519 (2020) https://doi.org/10.1109/JESTPE.2019.2908828
- Zhang, Y., Zhang, J., Deng, F., Xu, Z., Zhao, J.: Hybrid modular multilevel converter with self-balancing structure. IEEE Trans. Ind. Appl. 57(5), 5039-5051 (2021) https://doi.org/10.1109/TIA.2021.3087669