Acknowledgement
This work was supported in part by the National Natural Science Foundation of China under Grant 52177184 and in part by the State Power Investment Corporation Limited Wind Power Innovation Center under Grant KYTC2021FD04.
References
- Zeng, H.C., Chen, D.L.: A voltage-fed single-stage multi-input inverter for hybrid wind/photovoltaic power generation system. J. Power Electron. 22(4), 593-602 (2022) https://doi.org/10.1007/s43236-022-00399-w
- Mathew, E.C., Das, A.: A new scheme for direct integration of offshore wind farms to MVDC rid with fault bypass feature. IEEE Trans. Ind. Appl. 58(5), 6496-6505 (2022) https://doi.org/10.1109/TIA.2022.3183563
- Zhong, Y., Li, W.C., Zhou, L., Deng, C., Han, J.: Modulation method of parallel interleaved three-level inverter considering neutral point potential and phase current balance. J. Power Electron. 23(2), 241-251 (2022)
- Shahin, A., Moussa, H., Forrisi, I., Martin, J.-P., Nahid-Mobarakeh, B., Pierfederici, S.: Reliability improvement approach based on fatness control of parallel-connected inverters. IEEE Trans. Power Electron. 32(1), 681-692 (2017) https://doi.org/10.1109/TPEL.2016.2527778
- Zhang, H.S., Zhu, S.J., Jin, D., Wang, A., Jiang, J.J., Yu, L.L.: Unified coordinated control strategy for two parallel inverters tpow-pmsm system. J. Power Electron. 22(2), 243-253 (2021)
- Ge, B.M., Lu, X., Yu, X.H., Zhang, M.S., Peng, F.Z.: Multiphase-leg coupling current balancer for parallel operation of multiple mw power modules. IEEE Trans. Ind. Electron. 61(3), 1147-1157 (2014) https://doi.org/10.1109/TIE.2013.2258307
- Dissanayake, A.M., Ekneligoda, N.C.: Transient optimization of parallel connected inverters in islanded ac microgrids. IEEE Trans. Smart Grid. 10(5), 4951-4961 (2019) https://doi.org/10.1109/TSG.2018.2871413
- Hamza, D., Qiu, M., Jain, P.K.: Application and stability analysis of a novel digital active emi filter used in a grid-tied pv micro-inverter module. IEEE Trans. Power Electron. 28(6), 2867-2874 (2013) https://doi.org/10.1109/TPEL.2012.2219074
- Li, Q., Jiang, D., Liu, Z.C., Shen, Z.W., Zhang, Y.C.: A phase-shifted zero-cm pwm for circulating current reduction in two paralleled inverters with coupled inductors. IEEE Trans. Transp. Electrif. 6(1), 95-104 (2020) https://doi.org/10.1109/TTE.2019.2960160
- Jin, X.L., Liu, S.F., Shi, W., Yang, H., Zhao, R.X.: Novel space vector-based pwm strategy with minimal circulating current and line-current ripple for two parallel interleaved inverters. J. Power Electron. 21(2), 308-320 (2020)
- Jiang, C.P., Quan, Z.Y., Zhou, D.H., Li, Y.W.: A centralized CB-MPC to suppress low-frequency zscc in modular parallel converters. IEEE Trans. Ind. Electron. 68(4), 2760-2771 (2021) https://doi.org/10.1109/TIE.2020.2982111
- Shao, Z.P., Zhang, X., Wang, F.S., Cao, R.X.: Modeling and elimination of zero-sequence circulating currents in parallel three-level t-type grid-connected inverters. IEEE Trans. Power Electron. 30(2), 1050-1063 (2015) https://doi.org/10.1109/TPEL.2014.2309634
- Liu, X., Liu, T., Chen, A., Xing, X.Y., Zhang, C.H.: Circulating current suppression for paralleled three-level t-type inverters with online inductance identification. IEEE Trans. Ind. Appl. 57(5), 5052-5062 (2021) https://doi.org/10.1109/TIA.2021.3089115
- Qin, C.W., Zhang, C.H., Chen, A., Xing, X.Y., Zhang, G.X.: Circulating current suppression for parallel three-level inverters under unbalanced operating conditions. IEEE J. Emerg. Sel. Top. Power Electron. 7(1), 480-492 (2019) https://doi.org/10.1109/JESTPE.2018.2813390
- Liang, Z.G., Lin, X.C., Qiao, X.S., Kang, Y., Gao, B.F.: A coordinated strategy providing zero-sequence circulating current suppression and neutral-point potential balancing in two parallel three-level converters. IEEE J. Emerg Sel. Top. Power Electron. 6(1), 363-376 (2018) https://doi.org/10.1109/JESTPE.2017.2722005
- Zhang, C.H., Zhang, R., Xing, X.Y., Li, X.Y.: Circulating current mitigation and harmonic current compensation for multifunction parallel three-level four-leg converters. IEEE J. Emerg. Sel. Top. Power Electron. 10(3), 2805-2818 (2022) https://doi.org/10.1109/JESTPE.2021.3072437
- Vazquez, S., Rodriguez, J., Rivera, M., Franquelo, L.G., Norambuena, M.: Model predictive control for power converters and drives: advances and trends. IEEE Trans. Ind. Electron. 64(2), 935-947 (2017) https://doi.org/10.1109/TIE.2016.2625238
- Geyer, T., Papafotiou, G., Morari, M.: Model predictive direct torque control-Part i: concept, algorithm, and analysis. IEEE Trans. Ind. Electron. 56(6), 1894-1905 (2009) https://doi.org/10.1109/TIE.2008.2007030
- Lin, H., Liu, J.X., Shen, X.N., Leon, J.I., Vazquez, S., Alcaide, A.M., Wu, L.G., Franquelo, L.G.: Fuzzy sliding-mode control for three-level npc afe rectifers: a chattering alleviation approach. IEEE Trans. Power Electron. 37(10), 11704-11715 (2022) https://doi.org/10.1109/TPEL.2022.3174064
- Yin, Y.F., Liu, J.X., Sanchez, J.A., Wu, L.G., Vazquez, S., Leon, J.I., Franquelo, L.G.: Observer-based adaptive sliding mode control of npc converters: an rbf neural network approach. IEEE Trans. Power Electron. 34(4), 3831-3841 (2019) https://doi.org/10.1109/TPEL.2018.2853093
- Wu, L.G., Liu, J.X., Vazquez, S., Mazumder, S.K.: Sliding mode control in power converters and drives: A review. IEEE/CAA J. Autom. Sin. 9(3), 392-406 (2022) https://doi.org/10.1109/JAS.2021.1004380
- Liu, J.X., Gao, Y.B., Su, X.J., Wack, M., Wu, L.G.: Disturbance-observer-based control for air management of pem fuel cell systems via sliding mode technique. IEEE Trans. Control Syst. Technol. 27(3), 1129-1138 (2019) https://doi.org/10.1109/TCST.2018.2802467
- Liu, J.X., Shen, X.N., Alcaide, A.M., Yin, Y.F., Leon, J.I., Vazquez, S., Wu, L.G., Franquelo, L.G.: Sliding mode control of grid-connected neutral-point-clamped converters via high-gain observer. IEEE Trans. Ind. Electron. 69(4), 4010-4021 (2022)
- Sun, X.D., Xue, M.Z., Cai, Y.F., Tian, X., Jin, Z.J., Chen, L.: Adaptive ecms based on ef optimization by model predictive control for plug-in hybrid electric buses. IEEE Trans. Transp. Electrif.. 9(2), 2153-2163 (2023) https://doi.org/10.1109/TTE.2022.3212866
- Xu, W., Elmorshedy, M.F., Liu, Y., Islam, M.R., Allam, S.M.: Finite-set model predictive control based thrust maximization of linear induction motors used in linear metros. IEEE Trans. Veh. Technol. 68(6), 5443-5458 (2019) https://doi.org/10.1109/TVT.2019.2909785
- Yuan, X., Zhang, S., Zhang, C.N.: Nonparametric predictive current control for pmsm. IEEE Trans. Power Electron. 35(9), 9332-9341 (2020) https://doi.org/10.1109/TPEL.2020.2970173
- Jin, T., Huang, Y.S., Lin, Y.Z., Daniel Legrand, M.-N.: Model predictive current control based on virtual VV method for parallel three-level inverters. IEEE J. Emerg. Sel. Top. Power Electron. 9(5), 6049-6058 (2021) https://doi.org/10.1109/JESTPE.2021.3061688
- Wang, X.D., Zou, J.X., Peng, Y., Xie, C., Li, K., Guerrero, Z.J.M.: Elimination of zero sequence circulating currents in paralleled three-level t-type inverters with a model predictive control strategy. IET Power Electron. 11(15), 2573-2581 (2018) https://doi.org/10.1049/iet-pel.2018.5324
- Liu, T., Chen, A., Huang, Y.P.: Multivector model predictive current control for paralleled three-level t-type inverters with circulating current elimination. IEEE Trans. Ind. Electron. 70(8), 8042-8052 (2023) https://doi.org/10.1109/TIE.2022.3208607
- Wang, F., Li, Z.J., Tong, X.R., Chen, L.: Modeling, analysis and evaluation of modified model predictive control method for parallel three-level simplified neutral point clamped inverters. IEEE Access 7, 185349-185359 (2019) https://doi.org/10.1109/ACCESS.2019.2961054
- Xing, X.Y., Chen, H.: A fast-processing predictive control strategy for common-mode voltage reduction in parallel three-level inverters. IEEE J. Emerg. Sel. Top. Power Electron. 9(1), 316-326 (2021) https://doi.org/10.1109/JESTPE.2019.2956315
- Cortes, P., Rodriguez, J., Silva, C., Flores, A.: Delay compensation in model predictive current control of a three-phase inverter. IEEE Trans. Ind. Electron. 59(2), 1323-1325 (2012) https://doi.org/10.1109/TIE.2011.2157284