Acknowledgement
This work is supported by Natural Science Foundation of Shandong Province (ZR2022ME020), China.
References
- Kamarposhti, M.A., Mozafari, S.B., Soleymani, S., Hosseini, S.M.: Improving the wind penetration level of the power systems connected to doubly fed induction generator wind farms considering voltage stability constraints. J. Renew. Sustain. Energy (2015). https://doi.org/10.1063/1.4927008
- Shokouhandeh, H., Latif, S., Irshad, S., et al.: Optimal management of reactive power considering voltage and location of control devices using artificial bee algorithm. Appl. Sci. 12(1), 27 (2021)
- Kamarposhti, M.A., Shokouhandeh, H., Alipur, M., et al.: Optimal designing of fuzzy-PID controller in the load-frequency control loop of hydro-thermal power system connected to wind farm by HVDC lines. IEEE Access 10, 63812-63822 (2022) https://doi.org/10.1109/ACCESS.2022.3183155
- Ravyts, S., Moschner, J.D., Yordanov, G.H., et al.: Impact of photovoltaic technology and feeder voltage level on the efficiency of facade building-integrated photovoltaic systems. Appl. Energy 269, 115039 (2020)
- Rajaei, A., Khazan, R., Mahmoudian, M., et al.: A dual inductor high step-up DC/DC converter based on the cockcroft-walton multiplier. IEEE Trans. Power Electron. 33(11), 9699-9709 (2018) https://doi.org/10.1109/TPEL.2018.2792004
- Caparros Mancera, J.J., Saenz, J.L., Lopez, E., et al.: Experimental analysis of the effects of supercapacitor banks in a renewable DC microgrid. Appl. Energy 308, 118355 (2022)
- Elsayad, N., Moradisizkoohi, H., Mohammed, O.A.: Design and implementation of a new transformerless bidirectional DC-DC converter with wide conversion ratios. IEEE Trans. Ind. Electron. 66(9), 7067-7077 (2019) https://doi.org/10.1109/TIE.2018.2878126
- Zhang, Y., Liu, Q., Li, J., et al.: A common ground switched-quasi-Z-source bidirectional DC-DC converter with wide-voltage-gain range for EVs with hybrid energy sources. IEEE Trans. Ind. Electron. 65(6), 5188-5200 (2018) https://doi.org/10.1109/TIE.2017.2756603
- Zhang, Y., Fu, C., Sumner, M., et al.: A wide input-voltage range quasi-Z-source Boost DC-DC converter with high-voltage gain for fuel cell vehicles. IEEE Trans. Ind. Electron. 65(6), 5201-5212 (2018) https://doi.org/10.1109/TIE.2017.2745449
- Hallemans, L., Ravyts, S., Govaerts, G., et al.: A stepwise methodology for the design and evaluation of protection strategies in LVDC microgrids. Appl. Energy 310, 118420 (2022)
- Lakshmi, M., Hemamalini, S.: Nonisolated high gain DC-DC converter for DC microgrids. IEEE Trans. Ind. Electron. 65(2), 1205-1212 (2018) https://doi.org/10.1109/TIE.2017.2733463
- Zeng, Y., Li, H., Wang, W., et al.: High-efficient high-voltage-gain capacitor clamped DC-DC converters and their construction method. IEEE Trans. Ind. Electron. 68(5), 3992-4003 (2021) https://doi.org/10.1109/TIE.2020.2987273
- Wang, R., Feng, W., Xue, H., et al.: Simulation and power quality analysis of a loose-coupled bipolar DC microgrid in an office building. Appl. Energy 303, 117606 (2021)
- Wang, F., Wang, Y., Su, B., et al.: Three-phase interleaved high step-up bidirectional DC-DC converter. IET power electron. 13(12), 2469-2480 (2020) https://doi.org/10.1049/iet-pel.2020.0295
- Zhang, Y., Gao, Y., Li, J., et al.: Interleaved switched-capacitor bidirectional DC-DC converter with wide voltage-gain range for energy storage systems. IEEE Trans. Power Electron. 33(5), 3852-3869 (2018) https://doi.org/10.1109/TPEL.2017.2719402
- Forouzesh, M., Siwakoti, Y.P., Gorji, S.A., et al.: Step-up DC-DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 32(12), 9143-9178 (2017) https://doi.org/10.1109/TPEL.2017.2652318
- Tarzamni, H., Kolahian, P., Sabahi, M.: High step-up DC-DC converter with efcient inductive utilization. IEEE Trans. Ind. Electron. 68(5), 3831-3839 (2021) https://doi.org/10.1109/TIE.2020.2987253
- Alavi, P., Mohseni, P., Babaei, E., et al.: An ultra-high step-up DC-DC converter with extendable voltage gain and soft-switching capability. IEEE Trans. Ind. Electron. 67(11), 9238-9250 (2020) https://doi.org/10.1109/TIE.2019.2952821
- Ai, J., Lin, M., Yin, M.: A family of high step-up cascade DC-DC converters with clamped circuits. IEEE Trans. Power Electron. 35(5), 4819-4834 (2020) https://doi.org/10.1109/TPEL.2019.2943502
- Hao, Y., Li, H., Li, K., et al.: Single-switch boost converter with extremely high step-up voltage gain. J. Power Electron. 20, 1375-1385 (2020) https://doi.org/10.1007/s43236-020-00155-y
- Ding, X., Zhao, D., Liu, Y., et al.: High step-up three-level DC-DC converter with three-winding coupled-inductor. J. Power Electron. 20, 53-64 (2020) https://doi.org/10.1007/s43236-019-00006-5
- Lee, S., Do, H.: High step-up-coupled inductor Sepic DC-DC converter with input current ripple cancellation. J. Power Electron. 22, 739-749 (2022) https://doi.org/10.1007/s43236-022-00416-y
- Gao, M., Wang, S., Yu, W., et al.: Analysis of a coupled inductor boost three-port converter with high voltage gain for renewable energy systems. J. Power Electron. 22, 2100-2121 (2022) https://doi.org/10.1007/s43236-022-00533-8
- He, L., Chen, J., Xu, X., et al.: Soft-switching voltage-demultiplier-cell-based high step-down DC-DC converter. IEEE Trans. Power Electron. 34(10), 9828-9843 (2019) https://doi.org/10.1109/TPEL.2019.2895672
- Kumar, G.G., Sundaramoorthy, K., Karthikeyan, V., et al.: Switched capacitor-inductor network based ultra-gain DC-DC converter using single switch. IEEE Trans. Ind. Electron. 67(12), 10274-10283 (2020) https://doi.org/10.1109/TIE.2019.2962406
- Banaei, M.R., Bonab, H.A.F.: A novel structure for single-switch nonisolated transformerless Buck-Boost DC-DC converter. IEEE Trans. Ind. Electron. 64(1), 198-205 (2017) https://doi.org/10.1109/TIE.2016.2608321
- Sivaraj, G., Karpagavalli, P.: Novel double switch voltage-lift Cuk converter. J. Power Electron. 23, 23-34 (2023) https://doi.org/10.1007/s43236-022-00509-8
- Wu, X., Wang, J., Zhang, Y., et al.: Switched-capacitor-based high-gain DC-DC converter for fuel cell vehicle powertrain. J. Power Electron. 22, 557-568 (2022)
- Wang, S., Wang, Y., Wang, F.: Low current ripple high step-up interleaved boost converter with switched-capacitors and switched-inductors. J. Power Electron. 21, 1646-1658 (2021) https://doi.org/10.1007/s43236-021-00313-w
- Marconi, S., Spiazzi, G., Bevilacqua, A., et al.: A novel integrated step-up hybrid converter with wide conversion ratio. IEEE Trans. Power Electron. 35(3), 2764-2775 (2020) https://doi.org/10.1109/TPEL.2019.2931875
- Saadatizadeh, Z., Heris, P.C., Sabahi, M., et al.: A DC-DC transformerless high voltage gain converter with low voltage stresses on switches and diodes. IEEE Trans. Power Electron. 34(11), 10600-10609 (2019) https://doi.org/10.1109/TPEL.2019.2900212
- Wang, Z., Wang, P., Bi, H., et al.: A bidirectional DC/DC converter with wide-voltage gain range and low-voltage stress for hybrid-energy storage systems in electric vehicles. J Power Electron. 20, 76-86 (2020) https://doi.org/10.1007/s43236-019-00017-2
- Nguyen, M.-K., Duong, T.-D., Lim, Y.-C.: Switched-capacitor-based dual-switch high-boost DC-DC converter. IEEE Trans. Power Electron. 33(5), 4181-4189 (2018) https://doi.org/10.1109/TPEL.2017.2719040
- Haji-Esmaeili, M.M., Babaei, E., Sabahi, M.: High step-up quasiZ source DC-DC converter. IEEE Trans. Power Electron. 33(12), 10563-10571 (2018) https://doi.org/10.1109/TPEL.2018.2810884
- Saravanan, S., Babu, N.R.: Design and development of single switch high step-up DC-DC converter. IEEE J. Emerg. Sel. Top. Power Electron. 6(2), 855-863 (2018) https://doi.org/10.1109/JESTPE.2017.2739819
- Banaei, M.R., Sani, S.G.: Analysis and implementation of a new SEPIC-based single-switch Buck-Boost DC-DC converter with continuous input current. IEEE Trans. Power Electron. 33(12), 10317-10325 (2018) https://doi.org/10.1109/TPEL.2018.2799876
- Mohammadzadeh Shahir, F., Babaei, E., Farsadi, M.: Voltage-lift technique based nonisolated Boost DC-DC converter: analysis and design. IEEE Trans. Power Electron. 33(7), 5917-5926 (2018) https://doi.org/10.1109/TPEL.2017.2740843
- Wang, F., Wang, Y., Dong, Z., et al.: Multiphase low stresses high step-up DC-DC converter with self-balancing capacitor voltages and self-averaging inductor currents. IEEE Trans. Power Electron. 37(6), 6913-6926 (2022) https://doi.org/10.1109/TPEL.2021.3133613
- Kim, K., Cha, H., Park, S., et al.: A modified series-capacitor high conversion ratio DC-DC converter eliminating start-up voltage stress problem. IEEE Trans. Power Electron. 33(1), 8-12 (2018) https://doi.org/10.1109/TPEL.2017.2705705
- Maalandish, M., Hosseini, S.H., Ghasemzadeh, S., et al.: A novel multiphase high step-up DC/DC Boost converter with lower losses on semiconductors. IEEE J. Emerg. Sel. Top. Power Electron. 7(1), 541-554 (2019) https://doi.org/10.1109/JESTPE.2018.2830510
- Roy, J., Ayyanar, R.: Sensor-less current sharing over wide operating range for extended-duty-ratio Boost converter. IEEE Trans. Power Electron. 32(11), 8763-8777 (2017)
- Zheng, Y., Xie, W., Smedley, K.M.: A family of interleaved high step-up converters with diode-capacitor technique. IEEE J. Emerg. Sel. Top. Power Electron. 8(2), 1560-1570 (2020) https://doi.org/10.1109/JESTPE.2019.2907691
- Chen, J., Sha, D., Yan, Y., et al.: Cascaded high voltage conversion ratio bidirectional nonisolated DC-DC converter with variable switching frequency. IEEE Trans. Power Electron. 33(2), 1399-1409 (2018) https://doi.org/10.1109/TPEL.2017.2679105
- Guo, Z., Wang, Y., Wang, F., et al.: Wide input/output control strategy for multiphase series capacitor bidirectional DC-DC converters. J Power Electron. 21, 735-746 (2021) https://doi.org/10.1007/s43236-021-00221-z