DOI QR코드

DOI QR Code

General method of reducing switching voltage stress without extra voltage-loop control for related switching-capacitor high-gain converters

  • Fan Wang (School of Electrical Engineering, Shandong University) ;
  • Yubin Wang (School of Electrical Engineering, Shandong University) ;
  • Menghan Chu (School of Electrical Engineering, Shandong University) ;
  • Chuhao Gao (School of Electrical Engineering, Shandong University)
  • Received : 2023.06.12
  • Accepted : 2024.01.14
  • Published : 2024.04.20

Abstract

High-gain converters have been used on many occasions as interfaces for multiple energy conversions. Among these converters, a family of switching-capacitor high-gain converters is widely used due to its low cost, small volume, low loss, spontaneous capacitor voltages balance, and spontaneous inductor currents average. However, one or more of the switches in these converters suffer from the issue of withstanding higher voltage stresses than the other switches, which may limit the applications of these converters at high voltages. To solve this issue, a general method for reducing the switching voltage stresses for this high-gain converter family is proposed. This method can improve many kinds of high-gain converters, which can reduce the switching voltage stresses. Based on this method, a two-phase low-stress high-gain converter is proposed. The voltage stresses of all the switches in the proposed converter do not exceed half of the output voltage of the converter. Then, based on the proposed converter feature, a control method is proposed that can make the proposed converter have the automatic capacitor voltage balancing characteristic without an extra voltage-loop control. Finally, the proposed method is verified by prototype experiments.

Keywords

Acknowledgement

This work is supported by Natural Science Foundation of Shandong Province (ZR2022ME020), China.

References

  1. Kamarposhti, M.A., Mozafari, S.B., Soleymani, S., Hosseini, S.M.: Improving the wind penetration level of the power systems connected to doubly fed induction generator wind farms considering voltage stability constraints. J. Renew. Sustain. Energy (2015). https://doi.org/10.1063/1.4927008
  2. Shokouhandeh, H., Latif, S., Irshad, S., et al.: Optimal management of reactive power considering voltage and location of control devices using artificial bee algorithm. Appl. Sci. 12(1), 27 (2021)
  3. Kamarposhti, M.A., Shokouhandeh, H., Alipur, M., et al.: Optimal designing of fuzzy-PID controller in the load-frequency control loop of hydro-thermal power system connected to wind farm by HVDC lines. IEEE Access 10, 63812-63822 (2022) https://doi.org/10.1109/ACCESS.2022.3183155
  4. Ravyts, S., Moschner, J.D., Yordanov, G.H., et al.: Impact of photovoltaic technology and feeder voltage level on the efficiency of facade building-integrated photovoltaic systems. Appl. Energy 269, 115039 (2020)
  5. Rajaei, A., Khazan, R., Mahmoudian, M., et al.: A dual inductor high step-up DC/DC converter based on the cockcroft-walton multiplier. IEEE Trans. Power Electron. 33(11), 9699-9709 (2018) https://doi.org/10.1109/TPEL.2018.2792004
  6. Caparros Mancera, J.J., Saenz, J.L., Lopez, E., et al.: Experimental analysis of the effects of supercapacitor banks in a renewable DC microgrid. Appl. Energy 308, 118355 (2022)
  7. Elsayad, N., Moradisizkoohi, H., Mohammed, O.A.: Design and implementation of a new transformerless bidirectional DC-DC converter with wide conversion ratios. IEEE Trans. Ind. Electron. 66(9), 7067-7077 (2019) https://doi.org/10.1109/TIE.2018.2878126
  8. Zhang, Y., Liu, Q., Li, J., et al.: A common ground switched-quasi-Z-source bidirectional DC-DC converter with wide-voltage-gain range for EVs with hybrid energy sources. IEEE Trans. Ind. Electron. 65(6), 5188-5200 (2018) https://doi.org/10.1109/TIE.2017.2756603
  9. Zhang, Y., Fu, C., Sumner, M., et al.: A wide input-voltage range quasi-Z-source Boost DC-DC converter with high-voltage gain for fuel cell vehicles. IEEE Trans. Ind. Electron. 65(6), 5201-5212 (2018) https://doi.org/10.1109/TIE.2017.2745449
  10. Hallemans, L., Ravyts, S., Govaerts, G., et al.: A stepwise methodology for the design and evaluation of protection strategies in LVDC microgrids. Appl. Energy 310, 118420 (2022)
  11. Lakshmi, M., Hemamalini, S.: Nonisolated high gain DC-DC converter for DC microgrids. IEEE Trans. Ind. Electron. 65(2), 1205-1212 (2018) https://doi.org/10.1109/TIE.2017.2733463
  12. Zeng, Y., Li, H., Wang, W., et al.: High-efficient high-voltage-gain capacitor clamped DC-DC converters and their construction method. IEEE Trans. Ind. Electron. 68(5), 3992-4003 (2021) https://doi.org/10.1109/TIE.2020.2987273
  13. Wang, R., Feng, W., Xue, H., et al.: Simulation and power quality analysis of a loose-coupled bipolar DC microgrid in an office building. Appl. Energy 303, 117606 (2021)
  14. Wang, F., Wang, Y., Su, B., et al.: Three-phase interleaved high step-up bidirectional DC-DC converter. IET power electron. 13(12), 2469-2480 (2020) https://doi.org/10.1049/iet-pel.2020.0295
  15. Zhang, Y., Gao, Y., Li, J., et al.: Interleaved switched-capacitor bidirectional DC-DC converter with wide voltage-gain range for energy storage systems. IEEE Trans. Power Electron. 33(5), 3852-3869 (2018) https://doi.org/10.1109/TPEL.2017.2719402
  16. Forouzesh, M., Siwakoti, Y.P., Gorji, S.A., et al.: Step-up DC-DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 32(12), 9143-9178 (2017) https://doi.org/10.1109/TPEL.2017.2652318
  17. Tarzamni, H., Kolahian, P., Sabahi, M.: High step-up DC-DC converter with efcient inductive utilization. IEEE Trans. Ind. Electron. 68(5), 3831-3839 (2021) https://doi.org/10.1109/TIE.2020.2987253
  18. Alavi, P., Mohseni, P., Babaei, E., et al.: An ultra-high step-up DC-DC converter with extendable voltage gain and soft-switching capability. IEEE Trans. Ind. Electron. 67(11), 9238-9250 (2020) https://doi.org/10.1109/TIE.2019.2952821
  19. Ai, J., Lin, M., Yin, M.: A family of high step-up cascade DC-DC converters with clamped circuits. IEEE Trans. Power Electron. 35(5), 4819-4834 (2020) https://doi.org/10.1109/TPEL.2019.2943502
  20. Hao, Y., Li, H., Li, K., et al.: Single-switch boost converter with extremely high step-up voltage gain. J. Power Electron. 20, 1375-1385 (2020) https://doi.org/10.1007/s43236-020-00155-y
  21. Ding, X., Zhao, D., Liu, Y., et al.: High step-up three-level DC-DC converter with three-winding coupled-inductor. J. Power Electron. 20, 53-64 (2020) https://doi.org/10.1007/s43236-019-00006-5
  22. Lee, S., Do, H.: High step-up-coupled inductor Sepic DC-DC converter with input current ripple cancellation. J. Power Electron. 22, 739-749 (2022) https://doi.org/10.1007/s43236-022-00416-y
  23. Gao, M., Wang, S., Yu, W., et al.: Analysis of a coupled inductor boost three-port converter with high voltage gain for renewable energy systems. J. Power Electron. 22, 2100-2121 (2022) https://doi.org/10.1007/s43236-022-00533-8
  24. He, L., Chen, J., Xu, X., et al.: Soft-switching voltage-demultiplier-cell-based high step-down DC-DC converter. IEEE Trans. Power Electron. 34(10), 9828-9843 (2019) https://doi.org/10.1109/TPEL.2019.2895672
  25. Kumar, G.G., Sundaramoorthy, K., Karthikeyan, V., et al.: Switched capacitor-inductor network based ultra-gain DC-DC converter using single switch. IEEE Trans. Ind. Electron. 67(12), 10274-10283 (2020) https://doi.org/10.1109/TIE.2019.2962406
  26. Banaei, M.R., Bonab, H.A.F.: A novel structure for single-switch nonisolated transformerless Buck-Boost DC-DC converter. IEEE Trans. Ind. Electron. 64(1), 198-205 (2017) https://doi.org/10.1109/TIE.2016.2608321
  27. Sivaraj, G., Karpagavalli, P.: Novel double switch voltage-lift Cuk converter. J. Power Electron. 23, 23-34 (2023) https://doi.org/10.1007/s43236-022-00509-8
  28. Wu, X., Wang, J., Zhang, Y., et al.: Switched-capacitor-based high-gain DC-DC converter for fuel cell vehicle powertrain. J. Power Electron. 22, 557-568 (2022)
  29. Wang, S., Wang, Y., Wang, F.: Low current ripple high step-up interleaved boost converter with switched-capacitors and switched-inductors. J. Power Electron. 21, 1646-1658 (2021) https://doi.org/10.1007/s43236-021-00313-w
  30. Marconi, S., Spiazzi, G., Bevilacqua, A., et al.: A novel integrated step-up hybrid converter with wide conversion ratio. IEEE Trans. Power Electron. 35(3), 2764-2775 (2020) https://doi.org/10.1109/TPEL.2019.2931875
  31. Saadatizadeh, Z., Heris, P.C., Sabahi, M., et al.: A DC-DC transformerless high voltage gain converter with low voltage stresses on switches and diodes. IEEE Trans. Power Electron. 34(11), 10600-10609 (2019) https://doi.org/10.1109/TPEL.2019.2900212
  32. Wang, Z., Wang, P., Bi, H., et al.: A bidirectional DC/DC converter with wide-voltage gain range and low-voltage stress for hybrid-energy storage systems in electric vehicles. J Power Electron. 20, 76-86 (2020) https://doi.org/10.1007/s43236-019-00017-2
  33. Nguyen, M.-K., Duong, T.-D., Lim, Y.-C.: Switched-capacitor-based dual-switch high-boost DC-DC converter. IEEE Trans. Power Electron. 33(5), 4181-4189 (2018) https://doi.org/10.1109/TPEL.2017.2719040
  34. Haji-Esmaeili, M.M., Babaei, E., Sabahi, M.: High step-up quasiZ source DC-DC converter. IEEE Trans. Power Electron. 33(12), 10563-10571 (2018) https://doi.org/10.1109/TPEL.2018.2810884
  35. Saravanan, S., Babu, N.R.: Design and development of single switch high step-up DC-DC converter. IEEE J. Emerg. Sel. Top. Power Electron. 6(2), 855-863 (2018) https://doi.org/10.1109/JESTPE.2017.2739819
  36. Banaei, M.R., Sani, S.G.: Analysis and implementation of a new SEPIC-based single-switch Buck-Boost DC-DC converter with continuous input current. IEEE Trans. Power Electron. 33(12), 10317-10325 (2018) https://doi.org/10.1109/TPEL.2018.2799876
  37. Mohammadzadeh Shahir, F., Babaei, E., Farsadi, M.: Voltage-lift technique based nonisolated Boost DC-DC converter: analysis and design. IEEE Trans. Power Electron. 33(7), 5917-5926 (2018) https://doi.org/10.1109/TPEL.2017.2740843
  38. Wang, F., Wang, Y., Dong, Z., et al.: Multiphase low stresses high step-up DC-DC converter with self-balancing capacitor voltages and self-averaging inductor currents. IEEE Trans. Power Electron. 37(6), 6913-6926 (2022) https://doi.org/10.1109/TPEL.2021.3133613
  39. Kim, K., Cha, H., Park, S., et al.: A modified series-capacitor high conversion ratio DC-DC converter eliminating start-up voltage stress problem. IEEE Trans. Power Electron. 33(1), 8-12 (2018) https://doi.org/10.1109/TPEL.2017.2705705
  40. Maalandish, M., Hosseini, S.H., Ghasemzadeh, S., et al.: A novel multiphase high step-up DC/DC Boost converter with lower losses on semiconductors. IEEE J. Emerg. Sel. Top. Power Electron. 7(1), 541-554 (2019) https://doi.org/10.1109/JESTPE.2018.2830510
  41. Roy, J., Ayyanar, R.: Sensor-less current sharing over wide operating range for extended-duty-ratio Boost converter. IEEE Trans. Power Electron. 32(11), 8763-8777 (2017)
  42. Zheng, Y., Xie, W., Smedley, K.M.: A family of interleaved high step-up converters with diode-capacitor technique. IEEE J. Emerg. Sel. Top. Power Electron. 8(2), 1560-1570 (2020) https://doi.org/10.1109/JESTPE.2019.2907691
  43. Chen, J., Sha, D., Yan, Y., et al.: Cascaded high voltage conversion ratio bidirectional nonisolated DC-DC converter with variable switching frequency. IEEE Trans. Power Electron. 33(2), 1399-1409 (2018) https://doi.org/10.1109/TPEL.2017.2679105
  44. Guo, Z., Wang, Y., Wang, F., et al.: Wide input/output control strategy for multiphase series capacitor bidirectional DC-DC converters. J Power Electron. 21, 735-746 (2021) https://doi.org/10.1007/s43236-021-00221-z